Search This Blog

Monday, November 1, 2021

Yellow fever

From Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/Yellow_fever 

Yellow Fever
Other namesYellow jack, yellow plague, bronze john
YellowFeverVirus.jpg
A TEM micrograph of yellow fever virus (234,000× magnification)
SpecialtyInfectious disease
SymptomsFever, chills, muscle pain, headache, yellow skin
ComplicationsLiver failure, bleeding
Usual onset3–6 days post exposure
Duration3–4 days
CausesYellow fever virus spread by mosquitoes
Diagnostic methodBlood test
PreventionYellow fever vaccine
TreatmentSupportive care
Frequency~127,000 severe cases (2013)
Deaths5,100 (2015)

Yellow fever is a viral disease of typically short duration.  In most cases, symptoms include fever, chills, loss of appetite, nausea, muscle pains – particularly in the back – and headaches. Symptoms typically improve within five days. In about 15% of people, within a day of improving the fever comes back, abdominal pain occurs, and liver damage begins causing yellow skin. If this occurs, the risk of bleeding and kidney problems is increased.

The disease is caused by yellow fever virus and is spread by the bite of an infected mosquito. It infects only humans, other primates, and several types of mosquitoes. In cities, it is spread primarily by Aedes aegypti, a type of mosquito found throughout the tropics and subtropics. The virus is an RNA virus of the genus Flavivirus. The disease may be difficult to tell apart from other illnesses, especially in the early stages. To confirm a suspected case, blood-sample testing with polymerase chain reaction is required.

A safe and effective vaccine against yellow fever exists, and some countries require vaccinations for travelers. Other efforts to prevent infection include reducing the population of the transmitting mosquitoes. In areas where yellow fever is common, early diagnosis of cases and immunization of large parts of the population are important to prevent outbreaks. Once a person is infected, management is symptomatic; no specific measures are effective against the virus. Death occurs in up to half of those who get severe disease.

In 2013, yellow fever resulted in about 127,000 severe infections and 45,000 deaths worldwide, with nearly 90 percent of these occurring in Africa. Nearly a billion people live in an area of the world where the disease is common. It is common in tropical areas of the continents of South America and Africa, but not in Asia. Since the 1980s, the number of cases of yellow fever has been increasing. This is believed to be due to fewer people being immune, more people living in cities, people moving frequently, and changing climate increasing the habitat for mosquitoes.

The disease originated in Africa and spread to the American Continent starting in the 15th century with the European trafficking of enslaved Africans from sub-Saharan Africa. Since the 17th century, several major outbreaks of the disease have occurred in the Americas, Africa, and Europe. In the 18th and 19th centuries, yellow fever was considered one of the most dangerous infectious diseases; numerous epidemics swept through major cities of the US and in other parts of the world.

In 1927, yellow fever virus was the first human virus to be isolated.

Signs and symptoms

Yellow fever begins after an incubation period of three to six days. Most cases cause only a mild infection with fever, headache, chills, back pain, fatigue, loss of appetite, muscle pain, nausea, and vomiting.[13] In these cases, the infection lasts only three to six days.

But in 15% of cases, people enter a second, toxic phase of the disease characterized by recurring fever, this time accompanied by jaundice due to liver damage, as well as abdominal pain. Bleeding in the mouth, nose, the eyes, and the gastrointestinal tract cause vomit containing blood, hence the Spanish name for yellow fever, vómito negro ("black vomit"). There may also be kidney failure, hiccups, and delirium.

Among those who develop jaundice, the fatality rate is 20 to 50%, while the overall fatality rate is about 3 to 7.5%. Severe cases may have a mortality greater than 50%.

Surviving the infection provides lifelong immunity, and normally results in no permanent organ damage.

Cause

Yellow fever virus
Ijms-20-04657-g002.webp
Flavivirus structure and genome
Virus classification e
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Kitrinoviricota
Class: Flasuviricetes
Order: Amarillovirales
Family: Flaviviridae
Genus: Flavivirus
Species:
Yellow fever virus

Yellow fever is caused by yellow fever virus, an enveloped RNA virus 40–50 nm in width, the type species and namesake of the family Flaviviridae. It was the first illness shown to be transmissible by filtered human serum and transmitted by mosquitoes, by American doctor Walter Reed around 1900. The positive-sense, single-stranded RNA is around 10.862 nucleotides long and has a single open reading frame encoding a polyprotein. Host proteases cut this polyprotein into three structural (C, prM, E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5); the enumeration corresponds to the arrangement of the protein coding genes in the genome. Minimal yellow fever virus (YFV) 3'UTR region is required for stalling of the host 5'-3' exonuclease XRN1. The UTR contains PKS3 pseudoknot structure, which serves as a molecular signal to stall the exonuclease and is the only viral requirement for subgenomic flavivirus RNA (sfRNA) production. The sfRNAs are a result of incomplete degradation of the viral genome by the exonuclease and are important for viral pathogenicity. Yellow fever belongs to the group of hemorrhagic fevers.

The viruses infect, amongst others, monocytes, macrophages, Schwann cells, and dendritic cells. They attach to the cell surfaces via specific receptors and are taken up by an endosomal vesicle. Inside the endosome, the decreased pH induces the fusion of the endosomal membrane with the virus envelope. The capsid enters the cytosol, decays, and releases the genome. Receptor binding, as well as membrane fusion, are catalyzed by the protein E, which changes its conformation at low pH, causing a rearrangement of the 90 homodimers to 60 homotrimers.

After entering the host cell, the viral genome is replicated in the rough endoplasmic reticulum (ER) and in the so-called vesicle packets. At first, an immature form of the virus particle is produced inside the ER, whose M-protein is not yet cleaved to its mature form, so is denoted as precursor M (prM) and forms a complex with protein E. The immature particles are processed in the Golgi apparatus by the host protein furin, which cleaves prM to M. This releases E from the complex, which can now take its place in the mature, infectious virion.

Transmission

Aedes aegypti feeding
 
Adults of the yellow fever mosquito A. aegypti: The male is on the left, females are on the right. Only the female mosquito bites humans to transmit the disease.

Yellow fever virus is mainly transmitted through the bite of the yellow fever mosquito Aedes aegypti, but other mostly Aedes mosquitoes such as the tiger mosquito (Aedes albopictus) can also serve as a vector for this virus. Like other arboviruses, which are transmitted by mosquitoes, yellow fever virus is taken up by a female mosquito when it ingests the blood of an infected human or another primate. Viruses reach the stomach of the mosquito, and if the virus concentration is high enough, the virions can infect epithelial cells and replicate there. From there, they reach the haemocoel (the blood system of mosquitoes) and from there the salivary glands. When the mosquito next sucks blood, it injects its saliva into the wound, and the virus reaches the bloodstream of the bitten person. Transovarial and transstadial transmission of yellow fever virus within A. aegypti, that is, the transmission from a female mosquito to her eggs and then larvae, are indicated. This infection of vectors without a previous blood meal seems to play a role in single, sudden breakouts of the disease.

Three epidemiologically different infectious cycles occur in which the virus is transmitted from mosquitoes to humans or other primates. In the "urban cycle", only the yellow fever mosquito A. aegypti is involved. It is well adapted to urban areas, and can also transmit other diseases, including Zika fever, dengue fever, and chikungunya. The urban cycle is responsible for the major outbreaks of yellow fever that occur in Africa. Except for an outbreak in Bolivia in 1999, this urban cycle no longer exists in South America.

Besides the urban cycle, both in Africa and South America, a sylvatic cycle (forest or jungle cycle) is present, where Aedes africanus (in Africa) or mosquitoes of the genus Haemagogus and Sabethes (in South America) serve as vectors. In the jungle, the mosquitoes infect mainly nonhuman primates; the disease is mostly asymptomatic in African primates. In South America, the sylvatic cycle is currently the only way humans can become infected, which explains the low incidence of yellow fever cases on the continent. People who become infected in the jungle can carry the virus to urban areas, where A. aegypti acts as a vector. Because of this sylvatic cycle, yellow fever cannot be eradicated except by eradicating the mosquitoes that serve as vectors.

In Africa, a third infectious cycle known as "savannah cycle" or intermediate cycle, occurs between the jungle and urban cycles. Different mosquitoes of the genus Aedes are involved. In recent years, this has been the most common form of transmission of yellow fever in Africa.

Concern exists about yellow fever spreading to southeast Asia, where its vector A. aegypti already occurs.

Pathogenesis

After transmission from a mosquito, the viruses replicate in the lymph nodes and infect dendritic cells in particular. From there, they reach the liver and infect hepatocytes (probably indirectly via Kupffer cells), which leads to eosinophilic degradation of these cells and to the release of cytokines. Apoptotic masses known as Councilman bodies appear in the cytoplasm of hepatocytes.

Fatality may occur when cytokine storm, shock, and multiple organ failure follow.

Diagnosis

Yellow fever is most frequently a clinical diagnosis, based on symptomatology and travel history. Mild cases of the disease can only be confirmed virologically. Since mild cases of yellow fever can also contribute significantly to regional outbreaks, every suspected case of yellow fever (involving symptoms of fever, pain, nausea, and vomiting 6–10 days after leaving the affected area) is treated seriously.

If yellow fever is suspected, the virus cannot be confirmed until 6–10 days following the illness. A direct confirmation can be obtained by reverse transcription polymerase chain reaction, where the genome of the virus is amplified. Another direct approach is the isolation of the virus and its growth in cell culture using blood plasma; this can take 1–4 weeks.

Serologically, an enzyme-linked immunosorbent assay during the acute phase of the disease using specific IgM against yellow fever or an increase in specific IgG titer (compared to an earlier sample) can confirm yellow fever. Together with clinical symptoms, the detection of IgM or a four-fold increase in IgG titer is considered sufficient indication for yellow fever. As these tests can cross-react with other flaviviruses, such as dengue virus, these indirect methods cannot conclusively prove yellow fever infection.

Liver biopsy can verify inflammation and necrosis of hepatocytes and detect viral antigens. Because of the bleeding tendency of yellow fever patients, a biopsy is only advisable post mortem to confirm the cause of death.

In a differential diagnosis, infections with yellow fever must be distinguished from other feverish illnesses such as malaria. Other viral hemorrhagic fevers, such as Ebola virus, Lassa virus, Marburg virus, and Junin virus, must be excluded as the cause.

Prevention

Personal prevention of yellow fever includes vaccination and avoidance of mosquito bites in areas where yellow fever is endemic. Institutional measures for prevention of yellow fever include vaccination programmes and measures to control mosquitoes. Programmes for distribution of mosquito nets for use in homes produce reductions in cases of both malaria and yellow fever. Use of EPA-registered insect repellent is recommended when outdoors. Exposure for even a short time is enough for a potential mosquito bite. Long-sleeved clothing, long pants, and socks are useful for prevention. The application of larvicides to water-storage containers can help eliminate potential mosquito breeding sites. EPA-registered insecticide spray decreases the transmission of yellow fever.

  • Use insect repellent when outdoors such as those containing DEET, picaridin, ethyl butylacetylaminopropionate (IR3535), or oil of lemon eucalyptus on exposed skin.
  • Wear proper clothing to reduce mosquito bites. When weather permits, wear long sleeves, long pants, and socks when outdoors. Mosquitoes may bite through thin clothing, so spraying clothes with repellent containing permethrin or another EPA-registered repellent gives extra protection. Clothing treated with permethrin is commercially available. Mosquito repellents containing permethrin are not approved for application directly to the skin.
  • The peak biting times for many mosquito species are dusk to dawn. However, A. aegypti, one of the mosquitoes that transmits yellow fever virus, feeds during the daytime. Staying in accommodations with screened or air-conditioned rooms, particularly during peak biting times, also reduces the risk of mosquito bites.

Vaccination

The cover of a certificate that confirms the holder has been vaccinated against yellow fever
 
Vaccination against yellow fever 10 days before entering this country/territory is required for travellers coming from...
  All countries
  Risk countries (including airport transfers)
  Risk countries (excluding airport transfers)
  No requirement (risk country)
  No requirement (non-risk country)

Vaccination is recommended for those traveling to affected areas, because non-native people tend to develop more severe illness when infected. Protection begins by the 10th day after vaccine administration in 95% of people, and had been reported to last for at least 10 years. The World Health Organization (WHO) now states that a single dose of vaccine is sufficient to confer lifelong immunity against yellow fever disease. The attenuated live vaccine stem 17D was developed in 1937 by Max Theiler. The WHO recommends routine vaccination for people living in affected areas between the 9th and 12th month after birth.

Up to one in four people experience fever, aches, and local soreness and redness at the site of injection. In rare cases (less than one in 200,000 to 300,000), the vaccination can cause yellow fever vaccine-associated viscerotropic disease, which is fatal in 60% of cases. It is probably due to the genetic morphology of the immune system. Another possible side effect is an infection of the nervous system, which occurs in one in 200,000 to 300,000 cases, causing yellow fever vaccine-associated neurotropic disease, which can lead to meningoencephalitis and is fatal in less than 5% of cases.

The Yellow Fever Initiative, launched by the WHO in 2006, vaccinated more than 105 million people in 14 countries in West Africa. No outbreaks were reported during 2015. The campaign was supported by the GAVI Alliance, and governmental organizations in Europe and Africa. According to the WHO, mass vaccination cannot eliminate yellow fever because of the vast number of infected mosquitoes in urban areas of the target countries, but it will significantly reduce the number of people infected.

Demand for yellow fever vaccine has continued to increase due to the growing number of countries implementing yellow fever vaccination as part of their routine immunization programmes. Recent upsurges in yellow fever outbreaks in Angola (2015), the Democratic Republic of Congo (2016), Uganda (2016), and more recently in Nigeria and Brazil in 2017 have further increased demand, while straining global vaccine supply. Therefore, to vaccinate susceptible populations in preventive mass immunization campaigns during outbreaks, fractional dosing of the vaccine is being considered as a dose-sparing strategy to maximize limited vaccine supplies. Fractional dose yellow fever vaccination refers to administration of a reduced volume of vaccine dose, which has been reconstituted as per manufacturer recommendations. The first practical use of fractional dose yellow fever vaccination was in response to a large yellow fever outbreak in the Democratic Republic of the Congo in mid-2016.

In March 2017, the WHO launched a vaccination campaign in Brazil with 3.5 million doses from an emergency stockpile. In March 2017 the WHO recommended vaccination for travellers to certain parts of Brazil. In March 2018, Brazil shifted its policy and announced it planned to vaccinate all 77.5 million currently unvaccinated citizens by April 2019.

Compulsory vaccination

Some countries in Asia are considered to be potentially in danger of yellow fever epidemics, as both mosquitoes with the capability to transmit yellow fever as well as susceptible monkeys are present. The disease does not yet occur in Asia. To prevent introduction of the virus, some countries demand previous vaccination of foreign visitors who have passed through yellow fever areas. Vaccination has to be proved by a vaccination certificate, which is valid 10 days after the vaccination and lasts for 10 years. Although the WHO on 17 May 2013 advised that subsequent booster vaccinations are unnecessary, an older (than 10 years) certificate may not be acceptable at all border posts in all affected countries. A list of the countries that require yellow fever vaccination is published by the WHO. If the vaccination cannot be given for some reason, dispensation may be possible. In this case, an exemption certificate issued by a WHO-approved vaccination center is required. Although 32 of 44 countries where yellow fever occurs endemically do have vaccination programmes, in many of these countries, less than 50% of their population is vaccinated.

Vector control

Information campaign for prevention of dengue and yellow fever in Paraguay

Control of the yellow fever mosquito A. aegypti is of major importance, especially because the same mosquito can also transmit dengue fever and chikungunya disease. A. aegypti breeds preferentially in water, for example, in installations by inhabitants of areas with precarious drinking water supplies, or in domestic refuse, especially tires, cans, and plastic bottles. These conditions are common in urban areas in developing countries.

Two main strategies are employed to reduce A. aegypti populations. One approach is to kill the developing larvae. Measures are taken to reduce the water accumulations in which the larvae develop. Larvicides are used, along with larvae-eating fish and copepods, which reduce the number of larvae. For many years, copepods of the genus Mesocyclops have been used in Vietnam for preventing dengue fever. This eradicated the mosquito vector in several areas. Similar efforts may prove effective against yellow fever. Pyriproxyfen is recommended as a chemical larvicide, mainly because it is safe for humans and effective in small doses.

The second strategy is to reduce populations of the adult yellow fever mosquito. Lethal ovitraps can reduce Aedes populations, using lesser amounts of pesticide because it targets the pest directly. Curtains and lids of water tanks can be sprayed with insecticides, but application inside houses is not recommended by the WHO. Insecticide-treated mosquito nets are effective, just as they are against the Anopheles mosquito that carries malaria.

Treatment

As with other Flavivirus infections, no cure is known for yellow fever. Hospitalization is advisable and intensive care may be necessary because of rapid deterioration in some cases. Certain acute treatment methods lack efficacy: passive immunization after the emergence of symptoms is probably without effect; ribavirin and other antiviral drugs, as well as treatment with interferons, are ineffective in yellow fever patients. Symptomatic treatment includes rehydration and pain relief with drugs such as paracetamol (acetaminophen). Acetylsalicylic acid (aspirin). However, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) are often avoided because of an increased risk of gastrointestinal bleeding due to their anticoagulant effects.

Epidemiology

Yellow fever is common in tropical and subtropical areas of South America and Africa. Worldwide, about 600 million people live in endemic areas. The WHO estimates 200 000 cases of yellow fever worldwide each year. About 15% of people infected with yellow fever progress to a severe form of the illness, and up to half of those will die, as there is no cure for yellow fever.

Africa

Areas with risk of yellow fever in Africa (2017)

An estimated 90% of yellow fever infections occur on the African continent. In 2016, a large outbreak originated in Angola and spread to neighboring countries before being contained by a massive vaccination campaign. In March and April 2016, 11 imported cases of the Angola genotype in unvaccinated Chinese nationals were reported in China, the first appearance of the disease in Asia in recorded history.

Phylogenetic analysis has identified seven genotypes of yellow fever viruses, and they are assumed to be differently adapted to humans and to the vector A. aegypti. Five genotypes (Angola, Central/East Africa, East Africa, West Africa I, and West Africa II) occur only in Africa. West Africa genotype I is found in Nigeria and the surrounding region. West Africa genotype I appears to be especially infectious, as it is often associated with major outbreaks. The three genotypes found outside of Nigeria and Angola occur in areas where outbreaks are rare. Two outbreaks, in Kenya (1992–1993) and Sudan (2003 and 2005), involved the East African genotype, which had remained undetected in the previous 40 years.

South America

Areas with risk of yellow fever in South America (2018)

In South America, two genotypes have been identified (South American genotypes I and II). Based on phylogenetic analysis these two genotypes appear to have originated in West Africa and were first introduced into Brazil. The date of introduction of the predecessor African genotype which gave rise to the South American genotypes appears to be 1822 (95% confidence interval 1701 to 1911). The historical record shows an outbreak of yellow fever occurred in Recife, Brazil, between 1685 and 1690. The disease seems to have disappeared, with the next outbreak occurring in 1849. It was likely introduced with the trafficking of slaves through the slave trade from Africa. Genotype I has been divided into five subclades, A through E.

In late 2016, a large outbreak began in Minas Gerais state of Brazil that was characterized as a sylvan or jungle epizootic. It began as an outbreak in brown howler monkeys, which serve as a sentinel species for yellow fever, that then spread to men working in the jungle. No cases had been transmitted between humans by the A. aegypti mosquito, which can sustain urban outbreaks that can spread rapidly. In April 2017, the sylvan outbreak continued moving toward the Brazilian coast, where most people were unvaccinated. By the end of May the outbreak appeared to be declining after more than 3,000 suspected cases, 758 confirmed and 264 deaths confirmed to be yellow fever. The Health Ministry launched a vaccination campaign and was concerned about spread during the Carnival season in February and March. The CDC issued a Level 2 alert (practice enhanced precautions.)

A Bayesian analysis of genotypes I and II has shown that genotype I accounts for virtually all the current infections in Brazil, Colombia, Venezuela, and Trinidad and Tobago, while genotype II accounted for all cases in Peru. Genotype I originated in the northern Brazilian region around 1908 (95% highest posterior density interval [HPD]: 1870–1936). Genotype II originated in Peru in 1920 (95% HPD: 1867–1958). The estimated rate of mutation for both genotypes was about 5 × 10−4 substitutions/site/year, similar to that of other RNA viruses.

Asia

The main vector (A. aegypti) also occurs in tropical and subtropical regions of Asia, the Pacific, and Australia, but yellow fever has never occurred there, until jet travel introduced 11 cases from the 2016 Angola and DR Congo yellow fever outbreak in Africa. Proposed explanations include: That the strains of the mosquito in the east are less able to transmit yellow fever virus.

  • That immunity is present in the populations because of other diseases caused by related viruses (for example, dengue).
  • That the disease was never introduced because the shipping trade was insufficient.

But none is considered satisfactory. Another proposal is the absence of a slave trade to Asia on the scale of that to the Americas. The trans-Atlantic slave trade probably introduced yellow fever into the Western Hemisphere from Africa.

History

Early history

The evolutionary origins of yellow fever most likely lie in Africa, with transmission of the disease from nonhuman primates to humans. The virus is thought to have originated in East or Central Africa and spread from there to West Africa. As it was endemic in Africa, local populations had developed some immunity to it. When an outbreak of yellow fever would occur in an African community where colonists resided, most Europeans died, while the indigenous Africans usually developed nonlethal symptoms resembling influenza. This phenomenon, in which certain populations develop immunity to yellow fever due to prolonged exposure in their childhood, is known as acquired immunity. The virus, as well as the vector A. aegypti, were probably transferred to North and South America with the trafficking of slaves from Africa, part of the Columbian exchange following European exploration and colonization.

The first definitive outbreak of yellow fever in the New World was in 1647 on the island of Barbados. An outbreak was recorded by Spanish colonists in 1648 in the Yucatán Peninsula, where the indigenous Mayan people called the illness xekik ("blood vomit"). In 1685, Brazil suffered its first epidemic in Recife. The first mention of the disease by the name "yellow fever" occurred in 1744. McNeill argues that the environmental and ecological disruption caused by the introduction of sugar plantations created the conditions for mosquito and viral reproduction, and subsequent outbreaks of yellow fever. Deforestation reduced populations of insectivorous birds and other creatures that fed on mosquitoes and their eggs.

Sugar curing house, 1762: Sugar pots and jars on sugar plantations served as breeding place for larvae of A. aegypti, the vector of yellow fever.

In Colonial times and during the Napoleonic Wars, the West Indies were known as a particularly dangerous posting for soldiers due to yellow fever being endemic in the area. The mortality rate in British garrisons in Jamaica was seven times that of garrisons in Canada, mostly because of yellow fever and other tropical diseases. Both English and French forces posted there were seriously affected by the "yellow jack". Wanting to regain control of the lucrative sugar trade in Saint-Domingue (Hispaniola), and with an eye on regaining France's New World empire, Napoleon sent an army under the command of his brother-in-law General Charles Leclerc to Saint-Domingue to seize control after a slave revolt. The historian J. R. McNeill asserts that yellow fever accounted for about 35,000 to 45,000 casualties of these forces during the fighting. Only one third of the French troops survived for withdrawal and return to France. Napoleon gave up on the island and his plans for North America, selling the Louisiana Purchase to the US in 1803. In 1804, Haiti proclaimed its independence as the second republic in the Western Hemisphere. Considerable debate exists over whether the number of deaths caused by disease in the Haitian Revolution was exaggerated.

Although yellow fever is most prevalent in tropical-like climates, the northern United States were not exempted from the fever. The first outbreak in English-speaking North America occurred in New York City in 1668. English colonists in Philadelphia and the French in the Mississippi River Valley recorded major outbreaks in 1669, as well as additional yellow fever epidemics in Philadelphia, Baltimore, and New York City in the 18th and 19th centuries. The disease traveled along steamboat routes from New Orleans, causing some 100,000–150,000 deaths in total. The yellow fever epidemic of 1793 in Philadelphia, which was then the capital of the United States, resulted in the deaths of several thousand people, more than 9% of the population. One of these tragic deaths was James Hutchinson, a physician helping to treat the population of the city. The national government fled the city to Trenton, New Jersey, including President George Washington.

Headstones of people who died in the yellow fever epidemic of 1878 can be found in New Orleans' cemeteries.

The southern city of New Orleans was plagued with major epidemics during the 19th century, most notably in 1833 and 1853. A major epidemic occurred in both New Orleans and Shreveport, Louisiana in 1873. Its residents called the disease "yellow jack". Urban epidemics continued in the United States until 1905, with the last outbreak affecting New Orleans.

At least 25 major outbreaks took place in the Americas during the 18th and 19th centuries, including particularly serious ones in Cartagena, Chile, in 1741; Cuba in 1762 and 1900; Santo Domingo in 1803; and Memphis, Tennessee, in 1878.

In the early nineteenth century, the prevalence of yellow fever in the Caribbean "led to serious health problems" and alarmed the United States Navy as numerous deaths and sickness curtailed naval operations and destroyed morale. A tragic episode began in April 1822 when the frigate USS Macedonian left Boston and became part of Commodore James Biddle's West India Squadron. Unbeknownst to all, they were about to embark on a cruise to disaster and their assignment "would prove a cruise through hell". Secretary of the Navy Smith Thompson had assigned the squadron to guard United States merchant shipping and suppress piracy. During their time on deployment from 26 May to 3 August 1822, seventy-six of the Macedonian's officers and men died, including Dr. John Cadle, Surgeon USN. Seventy-four of these deaths were attributed to yellow fever. Biddle reported that another fifty-two of his crew were on sick-list. In their report to the Secretary of the Navy, Biddle and Surgeon's Mate Dr. Charles Chase stated the cause as "fever". As a consequence of this loss, Biddle noted that his squadron was forced to return to Norfolk Navy Yard early. Upon arrival, the Macedonian's crew were provided medical care and quarantined at Craney Island, Virginia.

A page from Commodore James Biddle's list of the seventy-six dead (seventy-four of yellow fever) aboard the USS Macedonian, dated 3 August 1822

In 1853, Cloutierville, Louisiana, had a late-summer outbreak of yellow fever that quickly killed 68 of the 91 inhabitants. A local doctor concluded that some unspecified infectious agent had arrived in a package from New Orleans In 1854, 650 residents of Savannah, Georgia, died from yellow fever. In 1858, St. Matthew's German Evangelical Lutheran Church in Charleston, South Carolina, suffered 308 yellow fever deaths, reducing the congregation by half. A ship carrying persons infected with the virus arrived in Hampton Roads in southeastern Virginia in June 1855. The disease spread quickly through the community, eventually killing over 3,000 people, mostly residents of Norfolk and Portsmouth. In 1873, Shreveport, Louisiana, lost 759 citizens in an 80-day period to a yellow fever epidemic, with over 400 additional victims eventually succumbing. The total death toll from August through November was approximately 1,200.

In 1878, about 20,000 people died in a widespread epidemic in the Mississippi River Valley. That year, Memphis had an unusually large amount of rain, which led to an increase in the mosquito population. The result was a huge epidemic of yellow fever. The steamship John D. Porter took people fleeing Memphis northward in hopes of escaping the disease, but passengers were not allowed to disembark due to concerns of spreading yellow fever. The ship roamed the Mississippi River for the next two months before unloading her passengers.

Major outbreaks have also occurred in southern Europe. Gibraltar lost many lives to outbreaks in 1804, 1814, and 1828. Barcelona suffered the loss of several thousand citizens during an outbreak in 1821. The Duke de Richelieu deployed 30,000 French troops to the border between France and Spain in the Pyrenees Mountains, to establish a cordon sanitaire in order to prevent the epidemic from spreading from Spain into France.

Causes and transmission

Ezekiel Stone Wiggins, known as the Ottawa Prophet, proposed that the cause of a yellow fever epidemic in Jacksonville, Florida, in 1888, was astrological.

The planets were in the same line as the sun and earth and this produced, besides Cyclones, Earthquakes, etc., a denser atmosphere holding more carbon and creating microbes. Mars had an uncommonly dense atmosphere, but its inhabitants were probably protected from the fever by their newly discovered canals, which were perhaps made to absorb carbon and prevent the disease.

In 1848, Josiah C. Nott suggested that yellow fever was spread by insects such as moths or mosquitoes, basing his ideas on the pattern of transmission of the disease. Carlos Finlay, a Cuban doctor and scientist, proposed in 1881 that yellow fever might be transmitted by mosquitoes rather than direct human contact. Since the losses from yellow fever in the Spanish–American War in the 1890s were extremely high, Army doctors began research experiments with a team led by Walter Reed, and composed of doctors James Carroll, Aristides Agramonte, and Jesse William Lazear. They successfully proved Finlay's ″mosquito hypothesis″. Yellow fever was the first virus shown to be transmitted by mosquitoes. The physician William Gorgas applied these insights and eradicated yellow fever from Havana. He also campaigned against yellow fever during the construction of the Panama Canal. A previous effort of canal building by the French had failed in part due to mortality from the high incidence of yellow fever and malaria, which killed many workers.

Although Dr. Walter Reed has received much of the credit in United States history books for "beating" yellow fever, he had fully credited Dr. Finlay with the discovery of the yellow fever vector, and how it might be controlled. Reed often cited Finlay's papers in his own articles, and also credited him for the discovery in his personal correspondence. The acceptance of Finlay's work was one of the most important and far-reaching effects of the U.S. Army Yellow Fever Commission of 1900. Applying methods first suggested by Finlay, the United States government and Army eradicated yellow fever in Cuba and later in Panama, allowing completion of the Panama Canal. While Reed built on the research of Finlay, historian François Delaporte notes that yellow fever research was a contentious issue. Scientists, including Finlay and Reed, became successful by building on the work of less prominent scientists, without always giving them the credit they were due. Reed's research was essential in the fight against yellow fever. He is also credited for using the first type of medical consent form during his experiments in Cuba, an attempt to ensure that participants knew they were taking a risk by being part of testing.

Like Cuba and Panama, Brazil also led a highly successful sanitation campaign against mosquitoes and yellow fever. Beginning in 1903, the campaign led by Oswaldo Cruz, then director general of public health, resulted not only in eradicating the disease but also in reshaping the physical landscape of Brazilian cities such as Rio de Janeiro. During rainy seasons, Rio de Janeiro had regularly suffered floods, as water from the bay surrounding the city overflowed into Rio's narrow streets. Coupled with the poor drainage systems found throughout Rio, this created swampy conditions in the city's neighborhoods. Pools of stagnant water stood year-long in city streets and proved to be a fertile ground for disease-carrying mosquitoes. Thus, under Cruz's direction, public health units known as "mosquito inspectors" fiercely worked to combat yellow fever throughout Rio by spraying, exterminating rats, improving drainage, and destroying unsanitary housing. Ultimately, the city's sanitation and renovation campaigns reshaped Rio de Janeiro's neighborhoods. Its poor residents were pushed from city centers to Rio's suburbs, or to towns found in the outskirts of the city. In later years, Rio's most impoverished inhabitants would come to reside in favelas.

During 1920–23, the Rockefeller Foundation’s International Health Board undertook an expensive and successful yellow fever eradication campaign in Mexico. The IHB gained the respect of Mexico's federal government because of the success. The eradication of yellow fever strengthened the relationship between the US and Mexico, which had not been very good in the years prior. The eradication of yellow fever was also a major step toward better global health.

In 1927, scientists isolated yellow fever virus in West Africa. Following this, two vaccines were developed in the 1930s. Max Theiler led the completion of the 17D yellow fever vaccine in 1937, for which he was subsequently awarded the Nobel Prize in Physiology or Medicine. That vaccine 17D is still in use, although newer vaccines, based on vero cells, are in development (as of 2018).

Current status

Using vector control and strict vaccination programs, the urban cycle of yellow fever was nearly eradicated from South America. Since 1943, only a single urban outbreak in Santa Cruz de la Sierra, Bolivia, has occurred. Since the 1980s, however, the number of yellow fever cases has been increasing again, and A. aegypti has returned to the urban centers of South America. This is partly due to limitations on available insecticides, as well as habitat dislocations caused by climate change. It is also because the vector control program was abandoned. Although no new urban cycle has yet been established, scientists believe this could happen again at any point. An outbreak in Paraguay in 2008 was thought to be urban in nature, but this ultimately proved not to be the case.

In Africa, virus eradication programs have mostly relied upon vaccination. These programs have largely been unsuccessful because they were unable to break the sylvatic cycle involving wild primates. With few countries establishing regular vaccination programs, measures to fight yellow fever have been neglected, making the future spread of the virus more likely.

Research

In the hamster model of yellow fever, early administration of the antiviral ribavirin is an effective treatment of many pathological features of the disease. Ribavirin treatment during the first five days after virus infection improved survival rates, reduced tissue damage in the liver and spleen, prevented hepatocellular steatosis, and normalised levels of alanine aminotransferase, a liver damage marker. The mechanism of action of ribavirin in reducing liver pathology in yellow fever virus infection may be similar to its activity in treatment of hepatitis C, a related virus. Because ribavirin had failed to improve survival in a virulent rhesus model of yellow fever infection, it had been previously discounted as a possible therapy. Infection was reduced in mosquitoes with the wMel strain of Wolbachia.

Yellow fever has been researched by several countries as a potential biological weapon.

Gross National Well-being

From Wikipedia, the free encyclopedia

Gross National Well-being/Wellness (GNW) or Happiness (GNH) a socioeconomic development and measurement framework. The GNW/GNH Index consists of seven dimensions: economic, environmental, physical, mental, work, social, and political. Most wellness areas include both subjective results (via survey) and objective data.

Disambiguation

The GNW Index is also known as the first GNH Index or Gross National Happiness Index, not to be confused with Bhutan's GNH Index. Both econometric frameworks are different in authorship, creation dates, and geographic scope. The GNW / GNH index is a global development measurement framework published in 2005 by the International Institute of Management in the United States.

The term "Gross National Happiness" was first coined by the 4th King of Bhutan, King Jigme Singye Wangchuck, in 1972 when he declared, "Gross National Happiness is more important than Gross Domestic Product. However, no GNH Index existed until 2005.

The GNH philosophy suggested that the ideal purpose of governments is to promote happiness. The philosophy remained difficult to implement due to the subjective nature of happiness, the lack of exact quantitative definition of GNH, and the lack of a practical model to measure the impact of economic policies on the subjective well-being of the citizens.

The GNW Index paper proposed the first GNH Index as a solution to help with the implementation of the GHN philosophy and was designed to transform the first generation abstract subjective political mission statement into a second generation implementation holistic (objective and subjective) concept and by treating happiness as a socioeconomic development metric that would provide an alternative to the traditional GDP indicator, the new metric would integrate subjective and objective socioeconomic development policy framework and measurement indicators.

The GNW Index is a secular econometric model that tracks 7 subjective and objective development areas with no religious measurement components. On the other hand, Bhutan's GNH Index is a local development framework and measurement index, published by the Centre for Bhutan Studies in 2012 based on 2011 Index function designed by Alkire-Foster at Oxford University. The Bhutan's GNH Index is customized to the country's Buddhist cultural and spiritual values, it tracks 9 subjective happiness areas including spiritual measurement such as prayers recitation and other Karma indicators. The concepts and issues at the heart of Bhutanese approach are similar to the secular GNH Index.

In 2006, a policy white paper providing recommendations for implementing the GNW Index metric was published by the International Institute of Management. The paper is widely referenced by academic and policy maker citing the GNW / GNH index as a potential model for local socioeconomic development and measurement.

Survey components

The subjective survey part of the GNW measurement system is structured into seven areas or dimensions. Each area or dimension satisfaction rating is scaled from 0–10: 0 being very dissatisfied, 5 being neutral, and 10 is very satisfied.

  1. Mental & Emotional Wellbeing Overall Satisfaction (0-10):
    Frequency and levels of positive vs. negative thoughts and feelings over the past year
  2. Physical & Health Wellbeing Overall Satisfaction (0-10):
    Physical safety and health, including risk to life, body and property and the cost and quality of healthcare, if one gets sick
  3. Work & Income Wellbeing Overall Satisfaction (0-10):
    Job and income to support essential living expenses, including shelter, food, transportation, and education. If a head of household, the expenses to support household/family is included
  4. Social Relations Wellbeing Overall Satisfaction (0-10):
    Relations with the significant other, family, friends, colleagues, neighbors, and community
  5. Economic & Retirement Wellbeing Overall Satisfaction (0-10):
    Disposable (extra) income, which is the remaining money after paying for essential living expenses. This money can be used for leisure activities, retirement savings, investments, or charity.
  6. Political & Government Wellbeing Overall Satisfaction (0-10):
    Political rights, privacy and personal freedom as well the performance of the government (including socioeconomic development policies effectiveness and efficiency)
  7. Living Environment Wellbeing Overall Satisfaction (0-10):
    City/urban planning, utilities, infrastructure, traffic, architecture, landscaping and nature's pollution (including noise, air, water, and soil)

The survey also asks four qualitative questions to identify key causes of happiness and unhappiness:

  1. What are the top positive things in your life that make you happy?
  2. What are the top challenges and causes of stress in your life?
  3. What would you advise your government to increase your well-being and happiness?
  4. What are the most influential city, state, federal or international projects? How are they impacting your well-being and happiness (positively or negatively)?

Quality of life

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Quality_of_life

Quality of life (QOL), according to Britannica, is the degree to which an individual is healthy, comfortable, and able to participate in or enjoy life events. The World Health Organization (WHO) defines QOL as "an individual's perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards and concerns". Standard indicators of the quality of life include wealth, employment, the environment, physical and mental health, education, recreation and leisure time, social belonging, religious beliefs, safety, security and freedom. QOL has a wide range of contexts, including the fields of international development, healthcare, politics and employment. Health related QOL (HRQOL) is an evaluation of QOL and its relationship with health.

Engaged theory

One approach, called engaged theory, outlined in the journal of Applied Research in the Quality of Life, posits four domains in assessing quality of life: ecology, economics, politics and culture. In the domain of culture, for example, it includes the following subdomains of quality of life:

  • Beliefs and ideas
  • Creativity and recreation
  • Enquiry and learning
  • Gender and generations
  • Identity and engagement
  • Memory and projection
  • Well-being and health

Under this conception, other frequently related concepts include freedom, human rights, and happiness. However, since happiness is subjective and difficult to measure, other measures are generally given priority. It has also been shown that happiness, as much as it can be measured, does not necessarily increase correspondingly with the comfort that results from increasing income. As a result, standard of living should not be taken to be a measure of happiness. Also sometimes considered related is the concept of human security, though the latter may be considered at a more basic level and for all people.

Quantitative measurement

Unlike per capita GDP or standard of living, both of which can be measured in financial terms, it is harder to make objective or long-term measurements of the quality of life experienced by nations or other groups of people. Researchers have begun in recent times to distinguish two aspects of personal well-being: Emotional well-being, in which respondents are asked about the quality of their everyday emotional experiences – the frequency and intensity of their experiences of, for example, joy, stress, sadness, anger, and affection – and life evaluation, in which respondents are asked to think about their life in general and evaluate it against a scale. Such and other systems and scales of measurement have been in use for some time. Research has attempted to examine the relationship between quality of life and productivity. There are many different methods of measuring quality of life in terms of health care, wealth and materialistic goods. However, it is much more difficult to measure meaningful expression of one's desires. One way to do so is to evaluate the scope of how individuals have fulfilled their own ideals. Quality of life can simply mean happiness, the subjective state of mind. By using that mentality, citizens of a developing country appreciate more since they are content with the basic necessities of health care, education and child protection.

According to ecological economist Robert Costanza:

While Quality of Life (QOL) has long been an explicit or implicit policy goal, adequate definition and measurement have been elusive. Diverse "objective" and "subjective" indicators across a range of disciplines and scales, and recent work on subjective well-being (SWB) surveys and the psychology of happiness have spurred renewed interest.

Human Development Index

Perhaps the most commonly used international measure of development is the Human Development Index (HDI), which combines measures of life expectancy, education, and standard of living, in an attempt to quantify the options available to individuals within a given society. The HDI is used by the United Nations Development Programme in their Human Development Report. However, since year 2010, The Human Development Report introduced an Inequality-adjusted Human Development Index (IHDI). While the original HDI remains useful, it stated that "the IHDI is the actual level of human development (accounting for inequality), while the original HDI can be viewed as an index of 'potential' human development (or the maximum level of HDI) that could be achieved if there was no inequality."

World Happiness Report

Map showing happiness of countries by their score according to the 2018 World Happiness Report.

The World Happiness Report is a landmark survey on the state of global happiness. It ranks 156 countries by their happiness levels, reflecting growing global interest in using happiness and substantial well-being as an indicator of the quality of human development. Its growing purpose has allowed governments, communities and organizations to use appropriate data to record happiness in order to enable policies to provide better lives. The reports review the state of happiness in the world today and show how the science of happiness explains personal and national variations in happiness. Developed again by the United Nations and published recently along with the HDI, this report combines both objective and subjective measures to rank countries by happiness, which is deemed as the ultimate outcome of a high quality of life. It uses surveys from Gallup, real GDP per capita, healthy life expectancy, having someone to count on, perceived freedom to make life choices, freedom from corruption, and generosity to derive the final score. Happiness is already recognised as an important concept in global public policy. The World Happiness Report indicates that some regions have in recent years been experiencing progressive inequality of happiness.

Other measures

The Physical Quality of Life Index (PQLI) is a measure developed by sociologist Morris David Morris in the 1970s, based on basic literacy, infant mortality, and life expectancy. Although not as complex as other measures, and now essentially replaced by the Human Development Index, the PQLI is notable for Morris's attempt to show a "less fatalistic pessimistic picture" by focusing on three areas where global quality of life was generally improving at the time, while ignoring gross national product and other possible indicators that were not improving.

The Happy Planet Index, introduced in 2006, is unique among quality of life measures in that, in addition to standard determinants of well-being, it uses each country's ecological footprint as an indicator. As a result, European and North American nations do not dominate this measure. The 2012 list is instead topped by Costa Rica, Vietnam and Colombia.

In 2010, Gallup researchers trying to find the world's happiest countries found Denmark to be at the top of the list. For the period 2014–2016, Norway surpasses Denmark to be at the top of the list. uSwitch publishes an annual quality of life index for European countries. France topped the list from 2009 to 2011.

A 2010 study by two Princeton University professors looked at 1,000 randomly selected U.S. residents over an extended period. It concludes that their life evaluations – that is, their considered evaluations of their life against a stated scale of one to ten – rise steadily with income. On the other hand, their reported quality of emotional daily experiences (their reported experiences of joy, affection, stress, sadness, or anger) levels off after a certain income level (approximately $75,000 per year in 2010); income above $75,000 does not lead to more experiences of happiness nor to further relief of unhappiness or stress. Below this income level, respondents reported decreasing happiness and increasing sadness and stress, implying the pain of life's misfortunes, including disease, divorce, and being alone, is exacerbated by poverty.

Gross national happiness and other subjective measures of happiness are being used by the governments of Bhutan and the United Kingdom. The World Happiness report, issued by Columbia University is a meta-analysis of happiness globally and provides an overview of countries and grassroots activists using GNH. The OECD issued a guide for the use of subjective well-being metrics in 2013. In the U.S., cities and communities are using a GNH metric at a grassroots level.

The Social Progress Index measures the extent to which countries provide for the social and environmental needs of their citizens. Fifty-two indicators in the areas of basic human needs, foundations of wellbeing, and opportunity show the relative performance of nations. The index uses outcome measures when there is sufficient data available or the closest possible proxies.

Day-Reconstruction Method was another way of measuring happiness, in which researchers asked their subjects to recall various things they did on the previous day and describe their mood during each activity. Being simple and approachable, this method required memory and the experiments have confirmed that the answers that people give are similar to those who repeatedly recalled each subject. The method eventually declined as it called for more effort and thoughtful responses, which often included interpretations and outcomes that do not occur to people who are asked to record every action in their daily lives.

Livability

The term quality of life is also used by politicians and economists to measure the livability of a given city or nation. Two widely known measures of livability are the Economist Intelligence Unit's Where-to-be-born Index and Mercer's Quality of Living Reports. These two measures calculate the livability of countries and cities around the world, respectively, through a combination of subjective life-satisfaction surveys and objective determinants of quality of life such as divorce rates, safety, and infrastructure. Such measures relate more broadly to the population of a city, state, or country, not to individual quality of life. Livability has a long history and tradition in urban design, and neighborhoods design standards such as LEED-ND are often used in an attempt to influence livability.

Crimes

Some crimes against property (e.g., graffiti and vandalism) and some "victimless crimes" have been referred to as "quality-of-life crimes." American sociologist James Q. Wilson encapsulated this argument as the broken windows theory, which asserts that relatively minor problems left unattended (such as litter, graffiti, or public urination by homeless individuals) send a subliminal message that disorder in general is being tolerated, and as a result, more serious crimes will end up being committed (the analogy being that a broken window left broken shows an image of general dilapidation).

Wilson's theories have been used to justify the implementation of zero tolerance policies by many prominent American mayors, most notably Oscar Goodman in Las Vegas, Richard Riordan in Los Angeles, Rudolph Giuliani in New York City and Gavin Newsom in San Francisco. Such policies refuse to tolerate even minor crimes; proponents argue that this will improve the quality of life of local residents. However, critics of zero tolerance policies believe that such policies neglect investigation on a case-by-case basis and may lead to unreasonably harsh penalties for crimes.

In healthcare

Within the field of healthcare, quality of life is often regarded in terms of how a certain ailment affects a patient on an individual level. This may be a debilitating weakness that is not life-threatening; life-threatening illness that is not terminal; terminal illness; the predictable, natural decline in the health of an elder; an unforeseen mental/physical decline of a loved one; or chronic, end-stage disease processes. Researchers at the University of Toronto's Quality of Life Research Unit define quality of life as "The degree to which a person enjoys the important possibilities of his or her life" (UofT). Their Quality of Life Model is based on the categories "being", "belonging", and "becoming"; respectively who one is, how one is connected to one's environment, and whether one achieves one's personal goals, hopes, and aspirations.

Experience sampling studies show substantial between-person variability in within-person associations between somatic symptoms and quality of life. Hecht and Shiel measure quality of life as “the patient’s ability to enjoy normal life activities” since life quality is strongly related to wellbeing without suffering from sickness and treatment. There are multiple assessments available that measure Health-Related Quality of Life, e.g., AQoL-8D, EQ5D – Euroqol, 15D, SF-36, SF-6D, HUI.

In international development

Quality of life has been deemed an important concept in the field of international development because it allows development to be analyzed on a measure that is generally accepted as more comprehensive than standard of living. Within development theory, however, there are varying ideas concerning what constitutes desirable change for a particular society. The different ways that quality of life is defined by institutions, therefore, shapes how these organizations work for its improvement as a whole.

Organisations such as the World Bank, for example, declare a goal of "working for a world free of poverty", with poverty defined as a lack of basic human needs, such as food, water, shelter, freedom, access to education, healthcare, or employment. In other words, poverty is defined as a low quality of life. Using this definition, the World Bank works towards improving quality of life through the stated goal of lowering poverty and helping people afford a better quality of life.

Other organizations, however, may also work towards improved global quality of life using a slightly different definition and substantially different methods. Many NGOs do not focus at all on reducing poverty on a national or international scale, but rather attempt to improve quality of life for individuals or communities. One example would be sponsorship programs that provide material aid for specific individuals. Although many organizations of this type may still talk about fighting poverty, the methods are significantly different.

Improving quality of life involves action not only by NGOs but also by governments. Global health has the potential to achieve greater political presence if governments were to incorporate aspects of human security into foreign policy. Stressing individuals’ basic rights to health, food, shelter, and freedom addresses prominent inter-sectoral problems negatively impacting today's society and may lead to greater action and resources. Integration of global health concerns into foreign policy may be hampered by approaches that are shaped by the overarching roles of defense and diplomacy.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...