Search This Blog

Friday, July 7, 2023

Biology and sexual orientation

From Wikipedia, the free encyclopedia

The relationship between biology and sexual orientation is a subject of research. While scientists do not know the exact cause of sexual orientation, they theorize that it is caused by a complex interplay of genetic, hormonal, and environmental influences. Hypotheses for the impact of the post-natal social environment on sexual orientation, however, are weak, especially for males.

Biological theories for explaining the causes of sexual orientation are favored by scientists. These factors, which may be related to the development of a sexual orientation, include genes, the early uterine environment (such as prenatal hormones), and brain structure.

Scientific research and studies

Fetal development and hormones

The influence of hormones on the developing fetus has been the most influential causal hypothesis of the development of sexual orientation. In simple terms, the developing fetal brain begins in a "female" state. Both the INAH3 (third interstitial nucleus of the anterior hypothalamus) area on the left side of the Hypothalamus, which stores gender preference, and the center area of the Bed Stria Terminalus (BSTc) area on the right side of the Hypothalamus, which stores gender identity, are small and function as female. The action of the SRY gene in the Y-chromosome in the fetus prompts the development of testes, which release testosterone, the primary androgen receptor-activating hormone, to allow testosterone to enter the cells and masculinize the fetus and fetal brain. If the proper amount of testosterone is received by the INAH3 while it is constructed at 12 weeks after conception, the testosterone overrides the estrogen that is also present, and enlarges the INAH3 which is known to be involved in directing typical male sex behavior, such as attraction to females. If the INAH3 does not receive an overriding amount of testosterone, in may not grow normal size for males, and may function as female or partially female, causein same-sex attraction to males.

It has been shown that the INAH3 in gay men has likely been exposed to low levels of testosterone in the of the brain compared to straight men, or had different levels of receptivity to its masculinizing effects, or experienced hormone fluctuations at critical times during fetal development. In women, if the INAH3 receives more testosterone than is normal for females, the INAH3 may enlarge somewhat or even to the size that is normal for males, increasing the likelihood of same sex attraction. Supporting this are studies of the finger digit ratio of the right hand, which is a robust marker of prenatal testosterone exposure. Lesbians on average, have significantly more masculine digit ratios, a finding which has been replicated numerous times in studies cross-culturally. While direct effects are hard to measure for ethical reasons, animal experiments where scientists manipulate exposure to sex hormones during gestation can also induce lifelong male-typical behavior and mounting in female animals, and female-typical behavior in male animals.

Maternal immune responses during fetal development are strongly demonstrated as causing male homosexuality and bisexuality. Research since the 1990s has demonstrated that the more sons a woman has, there is a higher chance of later born sons being gay. During pregnancy, male cells enter a mother's bloodstream, which are foreign to her immune system. In response, she develops antibodies to neutralize them. These antibodies are then released on future male foetuses and may neutralize Y-linked antigens, which play a role in brain masculinization, leaving areas of the brain responsible for sexual attraction in the female-typical position, or attracted to men. The more sons a mother has will increase the levels of these antibodies, thus creating the observed fraternal birth order effect. Biochemical evidence to support this effect was confirmed in a lab study in 2017, finding that mothers with a gay son, particularly those with older brothers, had heightened levels of antibodies to the NLGN4Y Y-protein than mothers with heterosexual sons. J. Michael Bailey has described maternal immune responses as "causal" of male homosexuality. This effect is estimated to account for between 15 and 29% of gay men, while other gay and bisexual men are thought to owe sexual orientation to genetic and hormonal interactions.

Socialization theories, which were dominant in the 1900s, favored the idea that children were born "undifferentiated" and were socialized into gender roles and sexual orientation. This led to medical experiments in which newborn and infant boys were surgically reassigned into girls after accidents such as botched circumcisions. These males were then reared and raised as females without telling the boys, which, contrary to expectations, did not make them feminine nor attracted to men. All published cases providing sexual orientation grew up to be strongly attracted to women. The failure of these experiments demonstrate that socialization effects do not induce feminine type behavior in males, nor make them attracted to men, and that the organizational effects of hormones on the fetal brain prior to birth have permanent effects. These are indicative of 'nature', not nurture, at least with regards to male sexual orientation.

The sexually dimorphic nucleus of the preoptic area (SDN-POA) is a key region of the brain which differs between males and females in humans and a number of mammals (e.g., sheep/rams, mice, rats), and is caused by sex differences in hormone exposure. The INAH-3 region is bigger in males than in females, and is known to be a critical region in sexual behavior. Dissection studies found that gay men had significantly smaller sized INAH-3 than heterosexual males, which is shifted in the female typical direction, a finding first demonstrated by neuroscientist Simon LeVay, which has been replicated. Dissection studies are rare, however, due to lack of funding and brain samples.

Long-term studies of domesticated sheep led by Charles Roselli have found that 6-8% of rams have a homosexual preference through their life. Dissection of ram brains also found a similar smaller (feminized) structure in homosexually oriented rams compared to heterosexually oriented rams in the equivalent brain region to the human SDN, the ovine sexually dimorphic nucleus (oSDN). The size of the sheep oSDN has also been demonstrated to be formed in utero, rather than postnatally, underscoring the role of prenatal hormones in masculinization of the brain for sexual attraction.

Other studies in humans have relied on brain imaging technology, such as research led by Ivanka Savic which compared hemispheres of the brain. This research found that straight men had right hemispheres 2% larger than the left, described as modest but "highly significant difference" by LeVay. In heterosexual women, the two hemispheres were the same size. In gay men, the two hemispheres were also the same size, or sex atypical, while in lesbians, the right hemispheres were slightly larger than the left, indicating a small shift in the male direction.

A model proposed by evolutionary geneticist William R. Rice argues that a misexpressed epigenetic modifier of testosterone sensitivity or insensitivity that affected development of the brain can explain homosexuality, and can best explain twin discordance. Rice et al. propose that these epimarks normally canalize sexual development, preventing intersex conditions in most of the population, but sometimes failing to erase across generations and causing reversed sexual preference. On grounds of evolutionary plausibility, Gavrilets, Friberg and Rice argue that all mechanisms for exclusive homosexual orientations likely trace back to their epigenetic model. Testing this hypothesis is possible with current stem cell technology.

Prenatal thyroid theory

Prenatal thyroid theory of same-sex attraction/gender dysphoria has been based on clinical and developmental observations of youngsters presenting to child psychiatry clinics in Istanbul/Turkey. The report of 12 cases with same-sex attraction/gender dysphoria born to mothers with thyroid diseases was first presented in EPA Congress, Vienna (2015) and published as an article in the same year. The extremely significant relationship between the two conditions suggested an independent model, named as Prenatal Thyroid Model of Homosexuality. According to Turkish child & adolescent psychiatrist Osman Sabuncuoglu, who generated the theory, maternal thyroid dysfunction may lead to abnormal deviations from gender-specific development in the offspring. Autoimmune destructive process as seen in Hashimoto thyroiditis, diminished supply of thyroid hormones and impacts on prenatal androgen system were all considered as contributing mechanisms. In a follow-up theoretical paper, previous research findings indicating higher rates of  polycystic ovary syndrome (PCOS) in female-to-male transsexuals and lesbian women were conceived as an indication of Prenatal Thyroid Model since PCOS and autoimmune thyroiditis are frequently comorbid diseases. Likewise, increased rates of autism spectrum disorder in children born to mothers with thyroid dysfunction and overrepresentation of ASD individuals in gender dysphoria populations suggest such an association. A second group of young children with this pattern were presented in IACAPAP Congress, Prague (2018).

The findings from previous research in LGBT populations had called for attention to be paid to thyroid system. A commentary by Jeffrey Mullen, published shortly after the 2015 article, underlined the importance of Prenatal Thyroid Model and supported developments in this field. Afterwards, several authors have emphasized the role of thyroid system in sexuality while citing the Prenatal Thyroid Model. Among them, Carosa et al. concluded that thyroid hormones, affecting the human sexual function strongly, the thyroid gland must be considered, along with the genitals and the brain, a sexual organ. As a tertiary source, an authoritative book on the subject of interplay between endocrinology, brain and behavior has also cited the thyroid-homosexuality proposal article in the latest edition. Most importantly, a genome-wide genetic association study on male homosexuals identified a significant region on Chromosome 14 which is related to autoimmune thyroid dysfunction in human beings. This is apparently a big support to the Prenatal Thyroid Model.

Genetic influences

Multiple genes have been found to play a role in sexual orientation. Scientists caution that many people misconstrue the meanings of genetic and environmental. Environmental influence does not automatically imply that the social environment influences or contributes to the development of sexual orientation. Hypotheses for the impact of the post-natal social environment on sexual orientation are weak, especially for males. There is, however, a vast non-social environment that is non-genetic yet still biological, such as prenatal development, that likely helps shape sexual orientation.

Twin studies

Identical twins are more likely to have the same sexual orientation than non-identical twins. This indicates that genes have some influence on sexual orientation; however, scientists have found evidence that other events in the womb play a role. Twins may have separate amniotic sacs and placentas, resulting in different exposure and timing of hormones.

A number of twin studies have attempted to compare the relative importance of genetics and environment in the determination of sexual orientation. In a 1991 study, Bailey and Pillard conducted a study of male twins recruited from "homophile publications", and found that 52% of monozygotic (MZ) brothers (of whom 59 were questioned) and 22% of the dizygotic (DZ) twins were concordant for homosexuality. 'MZ' indicates identical twins with the same sets of genes and 'DZ' indicates fraternal twins where genes are mixed to an extent similar to that of non-twin siblings. In a study of 61 pairs of twins, researchers found among their mostly male subjects a concordance rate for homosexuality of 66% among monozygotic twins and a 30% one among dizygotic twins. In 2000, Bailey, Dunne and Martin studied a larger sample of 4,901 Australian twins but reported less than half the level of concordance. They found 20% concordance in the male identical or MZ twins and 24% concordance for the female identical or MZ twins. Self reported zygosity, sexual attraction, fantasy and behaviours were assessed by questionnaire and zygosity was serologically checked when in doubt. Other researchers support biological causes for both men and women's sexual orientation.

A 2008 study of all adult twins in Sweden (more than 7,600 twins) found that same-sex behaviour was explained by both heritable genetic factors and unique environmental factors (which can include the prenatal environment during gestation, exposure to illness in early life, peer groups not shared with a twin, etc.), although a twin study cannot identify which factor is at play. Influences of the shared environment (influences including the family environment, rearing, shared peer groups, culture and societal views, and sharing the same school and community) had no effect for men, and a weak effect for women. This is consistent with the common finding that parenting and culture appears to play no role in male sexual orientation, but may play some small role in women. The study concludes that genetic influences on any lifetime same-sex partner were stronger for men than women, and that "it has been suggested individual differences in heterosexual and homosexual behavior result from unique environmental factors such as prenatal exposure to sex hormones, progressive maternal immunization to sex-specific proteins, or neurodevelopmental factors", although does not rule out other variables. The use of all adult twins in Sweden was designed to address the criticism of volunteer studies, in which a potential bias towards participation by gay twins may influence the results:

Biometric modeling revealed that, in men, genetic effects explained .34–.39 of the variance [of sexual orientation], the shared environment .00, and the individual-specific environment .61–.66 of the variance. Corresponding estimates among women were .18–.19 for genetic factors, .16–.17 for shared environmental, and .64–.66 for unique environmental factors. Although wide confidence intervals suggest cautious interpretation, the results are consistent with moderate, primarily genetic, familial effects, and moderate to large effects of the nonshared environment (social and biological) on same-sex sexual behavior.

Chromosome linkage studies

Chromosome linkage studies of sexual orientation have indicated the presence of multiple contributing genetic factors throughout the genome. In 1993, Dean Hamer and colleagues published findings from a linkage analysis of a sample of 76 gay brothers and their families. Hamer et al. found that the gay men had more gay male uncles and cousins on the maternal side of the family than on the paternal side. Gay brothers who showed this maternal pedigree were then tested for X chromosome linkage, using twenty-two markers on the X chromosome to test for similar alleles. In another finding, thirty-three of the forty sibling pairs tested were found to have similar alleles in the distal region of Xq28, which was significantly higher than the expected rates of 50% for fraternal brothers. This was popularly dubbed the "gay gene" in the media, causing significant controversy. In 1998, Sanders et al. reported on their similar study, in which they found that 13% of uncles of gay brothers on the maternal side were homosexual, compared with 6% on the paternal side.

A later analysis by Hu et al. replicated and refined the earlier findings. This study revealed that 67% of gay brothers in a new saturated sample shared a marker on the X chromosome at Xq28. Two other studies (Bailey et al., 1999; McKnight and Malcolm, 2000) failed to find a preponderance of gay relatives in the maternal line of homosexual men. One study by Rice et al. in 1999 failed to replicate the Xq28 linkage results. Meta-analysis of all available linkage data indicates a significant link to Xq28, but also indicates that additional genes must be present to account for the full heritability of sexual orientation.

Mustanski et al. (2005) performed a full-genome scan (instead of just an X chromosome scan) on individuals and families previously reported on in Hamer et al. (1993) and Hu et al. (1995), as well as additional new subjects. In the full sample they did not find linkage to Xq28.

Results from the first large, comprehensive multi-center genetic linkage study of male sexual orientation were reported by an independent group of researchers at the American Society of Human Genetics in 2012. The study population included 409 independent pairs of gay brothers, who were analyzed with over 300,000 single-nucleotide polymorphism markers. The data strongly replicated Hamer's Xq28 findings as determined by both two-point and multipoint (MERLIN) LOD score mapping. Significant linkage was also detected in the pericentromeric region of chromosome 8, overlapping with one of the regions detected in the Hamer lab's previous genomewide study. The authors concluded that "our findings, taken in context with previous work, suggest that genetic variation in each of these regions contributes to development of the important psychological trait of male sexual orientation". Female sexual orientation does not seem to be linked to Xq28, though it does appear moderately heritable.

In addition to sex chromosomal contribution, a potential autosomal genetic contribution to the development of homosexual orientation has also been suggested. In a study population composed of more than 7000 participants, Ellis et al. (2008) found a statistically significant difference in the frequency of blood type A between homosexuals and heterosexuals. They also found that "unusually high" proportions of homosexual males and homosexual females were Rh negative in comparison to heterosexuals. As both blood type and Rh factor are genetically inherited traits controlled by alleles located on chromosome 9 and chromosome 1 respectively, the study indicates a potential link between genes on autosomes and homosexuality.

The biology of sexual orientation has been studied in detail in several animal model systems. In the common fruit fly Drosophila melanogaster, the complete pathway of sexual differentiation of the brain and the behaviors it controls is well established in both males and females, providing a concise model of biologically controlled courtship. In mammals, a group of geneticists at the Korea Advanced Institute of Science and Technology bred a female mice specifically lacking a particular gene related to sexual behavior. Without the gene, the mice exhibited masculine sexual behavior and attraction toward urine of other female mice. Those mice who retained the gene fucose mutarotase (FucM) were attracted to male mice.

In interviews to the press, researchers have pointed that the evidence of genetic influences should not be equated with genetic determinism. According to Dean Hamer and Michael Bailey, genetic aspects are only one of the multiple causes of homosexuality.

In 2017, Scientific Reports published an article with a genome wide association study on male sexual orientation. The research consisted of 1,077 homosexual men and 1,231 heterosexual men. A gene named SLITRK6 on chromosome 13 was identified. The research supports another study which had been done by the neuroscientist Simon LeVay. LeVay's research suggested that the hypothalamus of gay men is different from straight men. The SLITRK6 is active in the mid-brain where the hypothalamus is. The researchers found that the thyroid stimulating hormone receptor (TSHR) on chromosome 14 shows sequence differences between gay and straight men. Graves' disease is associated with TSHR abnormalities, with previous research indicating that Graves' disease is more common in gay men than in straight men. Research indicated that gay people have lower body weight than straight people. It had been suggested that the overactive TSHR hormone lowered body weight in gay people, though this remains unproven.

In 2018, Ganna et al. performed another genome-wide association study on sexual orientation of men and women with data from 26,890 people who had at least one same-sex partner and 450,939 controls. The data in the study was meta-analyzed and obtained from the UK Biobank study and 23andMe. The researchers identified four variants more common in people who reported at least one same-sex experience on chromosomes 7, 11, 12, and 15. The variants on chromosomes 11 and 15 were specific to men, with the variant on chromosome 11 located in an olfactory gene and the variant on chromosome 15 having previously been linked to male-pattern baldness. The four variants were also correlated with mood and mental health disorders; major depressive disorder and schizophrenia in men and women, and bipolar disorder in women. However, none of the four variants could reliably predict sexual orientation.

In August 2019, a genome-wide association study of 493,001 individuals concluded that hundreds or thousands of genetic variants underlie homosexual behavior in both sexes, with 5 variants in particular being significantly associated. Some of these variants had sex-specific effects, and two of these variants suggested links to biological pathways that involve sex hormone regulation and olfaction. All the variants together captured between 8 and 25% of the variation in individual differences in homosexual behavior. These genes partly overlap with those for several other traits, including openness to experience and risk-taking behavior. Additional analyses suggested that sexual behavior, attraction, identity, and fantasies are influenced by a similar set of genetic variants. They also found that the genetic effects that differentiate heterosexual from homosexual behavior are not the same as those that differ among nonheterosexuals with lower versus higher proportions of same-sex partners, which suggests that there is no single continuum from heterosexual to homosexual preference, as suggested by the Kinsey scale.

In October 2021, another research paper reported that genetic factors influence the development of same-sex sexual behavior. A two-stage genome-wide association study (GWAS) with a total sample of 1478 homosexual males and 3313 heterosexual males in Han Chinese populations identified two genetic loci (FMR1NB and ZNF536) showing consistent association with male sexual orientation.

Epigenetics studies

A study suggests linkage between a mother's genetic make-up and homosexuality of her sons. Women have two X chromosomes, one of which is "switched off". The inactivation of the X chromosome occurs randomly throughout the embryo, resulting in cells that are mosaic with respect to which chromosome is active. In some cases though, it appears that this switching off can occur in a non-random fashion. Bocklandt et al. (2006) reported that, in mothers of homosexual men, the number of women with extreme skewing of X chromosome inactivation is significantly higher than in mothers without gay sons. 13% of mothers with one gay son, and 23% of mothers with two gay sons, showed extreme skewing, compared to 4% of mothers without gay sons.

Birth order

Blanchard and Klassen (1997) reported that each additional older brother increases the odds of a man being gay by 33%. This is now "one of the most reliable epidemiological variables ever identified in the study of sexual orientation". To explain this finding, it has been proposed that male fetuses provoke a maternal immune reaction that becomes stronger with each successive male fetus. This maternal immunization hypothesis (MIH) begins when cells from a male fetus enter the mother's circulation during pregnancy or while giving birth. Male fetuses produce H-Y antigens which are "almost certainly involved in the sexual differentiation of vertebrates". These Y-linked proteins would not be recognized in the mother's immune system because she is female, causing her to develop antibodies which would travel through the placental barrier into the fetal compartment. From here, the anti-male bodies would then cross the blood/brain barrier (BBB) of the developing fetal brain, altering sex-dimorphic brain structures relative to sexual orientation, increasing the likelihood that the exposed son will be more attracted to men than women. It is this antigen which maternal H-Y antibodies are proposed to both react to and 'remember'. Successive male fetuses are then attacked by H-Y antibodies which somehow decrease the ability of H-Y antigens to perform their usual function in brain masculinization.

In 2017, researchers discovered a biological mechanism of gay people who tend to have older brothers. They think Neuroligin 4 Y-linked protein is responsible for a later son being gay. They found that women had significantly higher anti-NLGN4Y levels than men. In addition, mothers of gay sons, particularly those with older brothers, had significantly higher anti-NLGN4Y levels than did the control samples of women, including mothers of heterosexual sons. The results suggest an association between a maternal immune response to NLGN4Y and subsequent sexual orientation in male offspring.

The fraternal birth order effect, however, does not apply to instances where a firstborn is homosexual.

Female fertility

In 2004, Italian researchers conducted a study of about 4,600 people who were the relatives of 98 homosexual and 100 heterosexual men. Female relatives of the homosexual men tended to have more offspring than those of the heterosexual men. Female relatives of the homosexual men on their mother's side tended to have more offspring than those on the father's side. The researchers concluded that there was genetic material being passed down on the X chromosome which both promote fertility in the mother and homosexuality in her male offspring. The connections discovered would explain about 20% of the cases studied, indicating that it being a highly significant factor to account for, but not the sole genetic factor determining sexual orientation.

Pheromone studies

Research conducted in Sweden has suggested that gay and straight men respond differently to two odors that are believed to be involved in sexual arousal. The research showed that when both heterosexual women and gay men are exposed to a testosterone derivative found in men's sweat, a region in the hypothalamus is activated. Heterosexual men, on the other hand, have a similar response to an estrogen-like compound found in women's urine. The conclusion is that sexual attraction, whether same-sex or opposite-sex oriented, operates similarly on a biological level. Researchers have suggested that this possibility could be further explored by studying young subjects to see if similar responses in the hypothalamus are found and then correlating these data with adult sexual orientation.

Studies of brain structure

A number of sections of the brain have been reported to be sexually dimorphic; that is, they vary between men and women. There have also been reports of variations in brain structure corresponding to sexual orientation. In 1990, Dick Swaab and Michel A. Hofman reported a difference in the size of the suprachiasmatic nucleus between homosexual and heterosexual men. In 1992, Allen and Gorski reported a difference related to sexual orientation in the size of the anterior commissure, but this research was refuted by numerous studies, one of which found that the entirety of the variation was caused by a single outlier.

Research on the physiologic differences between male and female brains are based on the idea that people have male or a female brain, and this mirrors the behavioral differences between the two sexes. Some researchers state that solid scientific support for this is lacking. Although consistent differences have been identified, including the size of the brain and of specific brain regions, male and female brains are very similar.

Sexually dimorphic nuclei in the anterior hypothalamus

LeVay also conducted some of these early researches. He studied four groups of neurons in the hypothalamus called INAH1, INAH2, INAH3 and INAH4. This was a relevant area of the brain to study, because of evidence that it played a role in the regulation of sexual behaviour in animals, and because INAH2 and INAH3 had previously been reported to differ in size between men and women.

He obtained brains from 41 deceased hospital patients. The subjects were classified into three groups. The first group comprised 19 gay men who had died of AIDS-related illnesses. The second group comprised 16 men whose sexual orientation was unknown, but whom the researchers presumed to be heterosexual. Six of these men had died of AIDS-related illnesses. The third group was of six women whom the researchers presumed to be heterosexual. One of the women had died of an AIDS-related illness.

The HIV-positive people in the presumably heterosexual patient groups were all identified from medical records as either intravenous drug abusers or recipients of blood transfusions. Two of the men who identified as heterosexual specifically denied ever engaging in a homosexual sex act. The records of the remaining heterosexual subjects contained no information about their sexual orientation; they were assumed to have been primarily or exclusively heterosexual "on the basis of the numerical preponderance of heterosexual men in the population".

LeVay found no evidence for a difference between the groups in the size of INAH1, INAH2 or INAH4. However, the INAH3 group appeared to be twice as big in the heterosexual male group as in the gay male group; the difference was highly significant, and remained significant when only the six AIDS patients were included in the heterosexual group. The size of INAH3 in the homosexual men's brains was comparable to the size of INAH3 in the heterosexual women's brains.

William Byne and colleagues attempted to identify the size differences reported in INAH 1–4 by replicating the experiment using brain sample from other subjects: 14 HIV-positive homosexual males, 34 presumed heterosexual males (10 HIV-positive), and 34 presumed heterosexual females (9 HIV-positive). The researchers found a significant difference in INAH3 size between heterosexual men and heterosexual women. The INAH3 size of the homosexual men was apparently smaller than that of the heterosexual men, and larger than that of the heterosexual women, though neither difference quite reached statistical significance.

Byne and colleagues also weighed and counted numbers of neurons in INAH3 tests not carried out by LeVay. The results for INAH3 weight were similar to those for INAH3 size; that is, the INAH3 weight for the heterosexual male brains was significantly larger than for the heterosexual female brains, while the results for the gay male group were between those of the other two groups but not quite significantly different from either. The neuron count also found a male-female difference in INAH3, but found no trend related to sexual orientation.

LeVay has said that Byne replicated his work, but that he employed a two-tailed statistical analysis, which is typically reserved for when no previous findings had employed the difference. LeVay has said that "given that my study had already reported a INAH3 to be smaller in gay men, a one tailed approach would have been more appropriate, and it would have yielded a significant difference [between heterosexual and homosexual men]".

J. Michael Bailey has criticized LeVay's critics—describing the claim that the INAH-3 difference could be attributable to AIDS as "aggravating", since the "INAH-3 did not differ between the brains of straight men who died of AIDS and those who did not have the disease". Bailey has further criticized the second objection that was raised, that being gay might have somehow caused the difference in INAH-3, and not vice-versa, saying "the problem with this idea is that the hypothalamus appears to develop early. Not a single expert I have ever asked about LeVay's study thought it was plausible that sexual behavior caused the INAH-3 differences."

The SCN of homosexual males has been demonstrated to be larger (both the volume and the number of neurons are twice as many as in heterosexual males). These areas of the hypothalamus have not yet been explored in homosexual females nor bisexual males nor females. Although the functional implications of such findings still have not been examined in detail, they cast serious doubt over the widely accepted Dörner hypothesis that homosexual males have a "female hypothalamus" and that the key mechanism of differentiating the "male brain from originally female brain" is the epigenetic influence of testosterone during prenatal development.

A 2010 study by Garcia-Falgueras and Swaab stated that "the fetal brain develops during the intrauterine period in the male direction through a direct action of testosterone on the developing nerve cells, or in the female direction through the absence of this hormone surge. In this way, our gender identity (the conviction of belonging to the male or female gender) and sexual orientation are programmed or organized into our brain structures when we are still in the womb. There is no indication that social environment after birth has an effect on gender identity or sexual orientation."

Ovine model

The domestic ram is used as an experimental model to study early programming of the neural mechanisms which underlie homosexuality, developing from the observation that approximately 8% of domestic rams are sexually attracted to other rams (male-oriented) when compared to the majority of rams which are female-oriented. In many species, a prominent feature of sexual differentiation is the presence of a sexually dimorphic nucleus (SDN) in the preoptic hypothalamus, which is larger in males than in females.

Roselli et al. discovered an ovine SDN (oSDN) in the preoptic hypothalamus that is smaller in male-oriented rams than in female-oriented rams, but similar in size to the oSDN of females. Neurons of the oSDN show aromatase expression which is also smaller in male-oriented rams versus female-oriented rams, suggesting that sexual orientation is neurologically hard-wired and may be influenced by hormones. However, results failed to associate the role of neural aromatase in the sexual differentiation of brain and behavior in the sheep, due to the lack of defeminization of adult sexual partner preference or oSDN volume as a result of aromatase activity in the brain of the fetuses during the critical period. Having said this, it is more likely that oSDN morphology and homosexuality may be programmed through an androgen receptor that does not involve aromatisation. Most of the data suggests that homosexual rams, like female-oriented rams, are masculinized and defeminized with respect to mounting, receptivity, and gonadotrophin secretion, but are not defeminized for sexual partner preferences, also suggesting that such behaviors may be programmed differently. Although the exact function of the oSDN is not fully known, its volume, length, and cell number seem to correlate with sexual orientation, and a dimorphism in its volume and of cells could bias the processing cues involved in partner selection. More research is needed in order to understand the requirements and timing of the development of the oSDN and how prenatal programming effects the expression of mate choice in adulthood.

Childhood gender nonconformity

Childhood gender nonconformity is a strong predictor of adult sexual orientation that has been consistently replicated in research, and is thought to be strong evidence of a biological difference between heterosexual and non-heterosexuals. A review authored by J. Michael Bailey states: "childhood gender nonconformity comprises the following phenomena among boys: cross-dressing, desiring to have long hair, playing with dolls, disliking competitive sports and rough play, preferring girls as playmates, exhibiting elevated separation anxiety, and desiring to be—or believing that one is—a girl. In girls, gender nonconformity comprises dressing like and playing with boys, showing interest in competitive sports and rough play, lacking interest in conventionally female toys such as dolls and makeup, and desiring to be a boy". This gender nonconformist behavior typically emerges at preschool age, although is often evident as early as age 2. Children are only considered gender nonconforming if they persistently engage in a variety of these behaviors, as opposed to engaging in a behavior on a few times or on occasion. It is also not a one-dimensional trait, but rather has varying degrees.

Children who grow up to be non-heterosexual were, on average, substantially more gender nonconforming in childhood. This is confirmed in both retrospective studies where homosexuals, bisexuals and heterosexuals are asked about their gender typical behavior in childhood, and in prospective studies, where highly gender nonconforming children are followed from childhood into adulthood to find out their sexual orientation. A review of retrospective studies that measured gender nonconforming traits estimated that 89% of homosexual men exceeded heterosexual males level of gender nonconformity, whereas just 2% of heterosexual men exceeded the homosexual median. For female sexual orientation, the figures were 81% and 12% respectively. A variety of other assessments such as childhood home videos, photos and reports of parents also confirm this finding. Critics of this research see this as confirming stereotypes; however, no study has ever demonstrated that this research has exaggerated childhood gender nonconformity. J. Michael Bailey argues that gay men often deny that they were gender nonconforming in childhood because they may have been bullied or maltreated by peers and parents for it, and because they often do not find femininity attractive in other gay males and thus would not want to acknowledge it in themselves. Additional research in Western cultures and non-Western cultures including Latin America, Asia, Polynesia, and the Middle East supports the validity of childhood gender nonconformity as a predictor of adult non-heterosexuality.

This research does not mean that all non-heterosexuals were gender nonconforming, but rather indicates that long before sexual attraction is known, non-heterosexuals, on average, are noticeably different from other children. There is little evidence that gender nonconforming children have been encouraged or taught to behave that way; rather, childhood gender nonconformity typically emerges despite conventional socialization. Medical experiments in which infant boys were sex reassigned and reared as girls did not make them feminine nor attracted to males.

Boys who were surgically reassigned female

Between the 1960s and 2000, many newborn and infant boys were surgically reassigned as females if they were born with malformed penises, or if they lost their penises in accidents. Many surgeons believed such males would be happier being socially and surgically reassigned female. In all seven published cases that have provided sexual orientation information, the subjects grew up to be attracted to females. Six cases were exclusively attracted to females, with one case 'predominantly' attracted to females. In a review article in the journal Psychological Science in the Public Interest, six researchers including J. Michael Bailey state this establishes a strong case that male sexual orientation is partly established before birth:

This is the result we would expect if male sexual orientation were entirely due to nature, and it is opposite of the result expected if it were due to nurture, in which case we would expect that none of these individuals would be predominantly attracted to women. They show how difficult it is to derail the development of male sexual orientation by psychosocial means.

They further argue that this raises questions about the significance of the social environment on sexual orientation, stating, "If one cannot reliably make a male human become attracted to other males by cutting off his penis in infancy and rearing him as a girl, then what other psychosocial intervention could plausibly have that effect?" It is further stated that neither cloacal exstrophy (resulting in a malformed penis), nor surgical accidents, are associated with abnormalities of prenatal androgens, thus, the brains of these individuals were male-organized at birth. Six of the seven identified as heterosexual males at follow up, despite being surgically altered and reared as females, with researchers adding: "available evidence indicates that in such instances, parents are deeply committed to raising these children as girls and in as gender-typical a manner as possible." Bailey et al. describe these sex reassignments as 'the near-perfect quasi-experiment' in measuring the impact of 'nature' versus 'nurture' with regards to male homosexuality.

'Exotic becomes erotic' theory

Daryl Bem, a social psychologist at Cornell University, has theorized that the influence of biological factors on sexual orientation may be mediated by experiences in childhood. A child's temperament predisposes the child to prefer certain activities over others. Because of their temperament, which is influenced by biological variables such as genetic factors, some children will be attracted to activities that are commonly enjoyed by other children of the same gender. Others will prefer activities that are typical of another gender. This will make a gender-conforming child feel different from opposite-gender children, while gender-nonconforming children will feel different from children of their own gender. According to Bem, this feeling of difference will evoke psychological arousal when the child is near members of the gender which it considers as being 'different'. Bem theorizes that this psychological arousal will later be transformed into sexual arousal: children will become sexually attracted to the gender which they see as different ("exotic"). This proposal is known as the "exotic becomes erotic" theory. Wetherell et al. state that Bem "does not intend his model as an absolute prescription for all individuals, but rather as a modal or average explanation."

Two critiques of Bem's theory in the journal Psychological Review concluded that "studies cited by Bem and additional research show that [the] Exotic Becomes Erotic theory is not supported by scientific evidence." Bem was criticized for relying on a non-random sample of gay men from the 1970s (rather than collecting new data) and for drawing conclusions that appear to contradict the original data. An "examination of the original data showed virtually all respondents were familiar with children of both sexes", and that only 9% of gay men said that "none or only a few" of their friends were male, and most gay men (74%) reported having "an especially close friend of the same sex" during grade school. Further, "71% of gay men reported feeling different from other boys, but so did 38% of heterosexual men. The difference for gay men is larger, but still indicates that feeling different from same-sex peers was common for heterosexual men." Bem also acknowledged that gay men were more likely to have older brothers (the fraternal birth order effect), which appeared to contradict an unfamiliarity with males. Bem cited cross-cultural studies which also "appear to contradict the EBE theory assertion", such as the Sambia tribe in Papua New Guinea, which ritually enforced homosexual acts among teenagers; yet once these boys reached adulthood, only a small proportion of men continued to engage in homosexual behaviour - similar to levels observed in the United States. Additionally, Bem's model could be interpreted as implying that if one could change a child's behavior, one could change their sexual orientation, but most psychologists doubt this would be possible.

Neuroscientist Simon LeVay said that while Bem's theory was arranged in a "believable temporal order", that it ultimately "lacks empirical support". Social psychologist Justin Lehmiller stated that Bem's theory has received praise "for the way it seamlessly links biological and environmental influences" and that there "is also some support for the model in the sense that childhood gender nonconformity is indeed one of the strongest predictors of adult homosexuality", but that the validity of the model "has been questioned on numerous grounds and scientists have largely rejected it."

Sexual orientation and evolution

General

Sexual practices that significantly reduce the frequency of heterosexual intercourse also significantly decrease the chances of successful reproduction, and for this reason, they would appear to be maladaptive in an evolutionary context following a simple Darwinian model (competition amongst individuals) of natural selection—on the assumption that homosexuality would reduce this frequency. Several theories have been advanced to explain this contradiction, and new experimental evidence has demonstrated their feasibility.

Some scholars have suggested that homosexuality is indirectly adaptive, by conferring a reproductive advantage in a non-obvious way on heterosexual siblings or their children, a hypothesised instance of kin selection. By way of analogy, the allele (a particular version of a gene) which causes sickle-cell anemia when two copies are present, also confers resistance to malaria with a lesser form of anemia when one copy is present (this is called heterozygous advantage).

Brendan Zietsch of the Queensland Institute of Medical Research proposes the alternative theory that men exhibiting female traits become more attractive to females and are thus more likely to mate, provided the genes involved do not drive them to complete rejection of heterosexuality.

In a 2008 study, its authors stated that "There is considerable evidence that human sexual orientation is genetically influenced, so it is not known how homosexuality, which tends to lower reproductive success, is maintained in the population at a relatively high frequency." They hypothesized that "while genes predisposing to homosexuality reduce homosexuals' reproductive success, they may confer some advantage in heterosexuals who carry them". Their results suggested that "genes predisposing to homosexuality may confer a mating advantage in heterosexuals, which could help explain the evolution and maintenance of homosexuality in the population". However, in the same study, the authors noted that "nongenetic alternative explanations cannot be ruled out" as a reason for the heterosexual in the homosexual-heterosexual twin pair having more partners, specifically citing "social pressure on the other twin to act in a more heterosexual way" (and thus seek out a greater number of sexual partners) as an example of one alternative explanation. The study acknowledges that a large number of sexual partners may not lead to greater reproductive success, specifically noting there is an "absence of evidence relating the number of sexual partners and actual reproductive success, either in the present or in our evolutionary past".

The heterosexual advantage hypothesis was given strong support by the 2004 Italian study demonstrating increased fecundity in the female matrilineal relatives of gay men. As originally pointed out by Hamer, even a modest increase in reproductive capacity in females carrying a "gay gene" could easily account for its maintenance at high levels in the population.

Gay uncle hypothesis

The "gay uncle hypothesis" posits that people who themselves do not have children may nonetheless increase the prevalence of their family's genes in future generations by providing resources (e.g., food, supervision, defense, shelter) to the offspring of their closest relatives.

This hypothesis is an extension of the theory of kin selection, which was originally developed to explain apparent altruistic acts which seemed to be maladaptive. The initial concept was suggested by J. B. S. Haldane in 1932 and later elaborated by many others including John Maynard Smith, W. D. Hamilton and Mary Jane West-Eberhard. This concept was also used to explain the patterns of certain social insects where most of the members are non-reproductive.

Vasey and VanderLaan (2010) tested the theory on the Pacific island of Samoa, where they studied women, straight men, and the fa'afafine, men who prefer other men as sexual partners and are accepted within the culture as a distinct third gender category. Vasey and VanderLaan found that the fa'afafine said they were significantly more willing to help kin, yet much less interested in helping children who are not family, providing the first evidence to support the kin selection hypothesis.

The hypothesis is consistent with other studies on homosexuality, which show that it is more prevalent amongst both siblings and twins.

Vasey and VanderLaan (2011) provides evidence that if an adaptively designed avuncular male androphilic phenotype exists and its development is contingent on a particular social environment, then a collectivistic cultural context is insufficient, in and of itself, for the expression of such a phenotype.

Biological differences in gay men and lesbian women

Some studies have found correlations between physiology of people and their sexuality; these studies provide evidence which suggests that:

  • Gay men and straight women have, on average, equally proportioned brain hemispheres. Lesbian women and straight men have, on average, slightly larger right brain hemispheres.
  • The suprachiasmatic nucleus of the hypothalamus was found by Swaab and Hopffman to be larger in gay men than in non-gay men; the suprachiasmatic nucleus is also known to be larger in men than in women.
  • Gay men report, on average, slightly longer and thicker penises than non-gay men.
  • The average size of the INAH 3 in the brains of gay men is approximately the same size as INAH 3 in women, which is significantly smaller, and the cells more densely packed, than in heterosexual men's brains.
  • The anterior commissure was found to be larger in gay men than women and heterosexual men, but a subsequent study found no such difference.
  • The functioning of the inner ear and the central auditory system in lesbians and bisexual women are more like the functional properties found in men than in non-gay women (the researchers argued this finding was consistent with the prenatal hormonal theory of sexual orientation).
  • The startle response (eyeblink following a loud sound) is similarly masculinized in lesbians and bisexual women.
  • Gay and non-gay people's brains respond differently to two putative sex pheromones (AND, found in male armpit secretions, and EST, found in female urine).
  • The amygdala, a region of the brain, is more active in gay men than non-gay men when exposed to sexually arousing material.
  • Finger length ratios between the index and ring fingers have been reported to differ, on average, between non-gay and lesbian women.
  • Gay men and lesbians are significantly more likely to be left-handed or ambidextrous than non-gay men and women; Simon LeVay argues that because "[h]and preference is observable before birth... [t]he observation of increased non-right-handness in gay people is therefore consistent with the idea that sexual orientation is influenced by prenatal processes," perhaps heredity.
  • A study of over 50 gay men found that about 23% had counterclockwise hair whorl, as opposed to 8% in the general population. This may correlate with left-handedness.
  • Gay men have increased ridge density in the fingerprints on their left thumbs and little fingers.
  • Length of limbs and hands of gay men is smaller compared to height than the general population, but only among white men.

J. Michael Bailey has argued that the early childhood gender nonconforming behavior of homosexuals, as opposed to biological markers, are better evidence of homosexuality being an inborn trait. He argues that gay men are "punished much more than rewarded" for their childhood gender nonconformity, and that such behavior "emerges with no encouragement, and despite opposition", making it "the sine qua non of innateness".

Political aspects

Whether genetic or other physiological or psychological determinants form the basis of sexual orientation is a highly politicized issue. The Advocate, a U.S. gay and lesbian newsmagazine, reported in 1996 that 61% of its readers believed that "it would mostly help gay and lesbian rights if homosexuality were found to be biologically determined". A cross-national study in the United States, the Philippines, and Sweden found that those who believed that "homosexuals are born that way" held significantly more positive attitudes toward homosexuality than those who believed that "homosexuals choose to be that way" or "learn to be that way".

Equal protection analysis in U.S. law determines when government requirements create a "suspect classification" of groups and therefore eligible for heightened scrutiny based on several factors, one of which is immutability.

Evidence that sexual orientation is biologically determined (and therefore perhaps immutable in the legal sense) would strengthen the legal case for heightened scrutiny of laws discriminating on that basis.

The perceived causes of sexual orientation have a significant bearing on the status of sexual minorities in the eyes of social conservatives. The Family Research Council, a conservative Christian think tank in Washington, D.C., argues in the book Getting It Straight that finding people are born gay "would advance the idea that sexual orientation is an innate characteristic, like race; that homosexuals, like African-Americans, should be legally protected against 'discrimination;' and that disapproval of homosexuality should be as socially stigmatized as racism. However, it is not true." On the other hand, some social conservatives such as Reverend Robert Schenck have argued that people can accept any scientific evidence while still morally opposing homosexuality. National Organization for Marriage board member and fiction writer Orson Scott Card has supported biological research on homosexuality, writing that "our scientific efforts in regard to homosexuality should be to identify genetic and uterine causes... so that the incidence of this dysfunction can be minimized.... [However, this should not be seen] as an attack on homosexuals, a desire to 'commit genocide' against the homosexual community... There is no 'cure' for homosexuality because it is not a disease. There are, however, different ways of living with homosexual desires."

Some advocates for the rights of sexual minorities resist what they perceive as attempts to pathologise or medicalise 'deviant' sexuality, and choose to fight for acceptance in a moral or social realm. The journalist Chandler Burr has stated that "[s]ome, recalling earlier psychiatric "treatments" for homosexuality, discern in the biological quest the seeds of genocide. They conjure up the specter of the surgical or chemical "rewiring" of gay people, or of abortions of fetal homosexuals who have been hunted down in the womb." LeVay has said in response to letters from gays and lesbians making such criticisms that the research "has contributed to the status of gay people in society".

Homosexual behavior in animals

From Wikipedia, the free encyclopedia
Two male mallards, Anas platyrhynchos

Various non-human animal species exhibit behavior that can be interpreted as homosexual or bisexual. This may include same-sex sexual activity, courtship, affection, pair bonding, and parenting among same-sex animal pairs. Various forms of this are found in every major geographic region and every major animal group. The sexual behavior of non-human animals takes many different forms, even within the same species, though homosexual behavior is best known from social species.

Scientists perceive homosexual behavior in animals to different degrees. Multiple current sources from the 2010s and later state that same-sex sexual behavior has been observed in over 1,500 species. A previous 1990s source from Canadian biologist Bruce Bagemihl states same-sex behavior (comprising courtship, sexual, pair-bonding, and parental activities) has been documented in over 450 species of animals worldwide. Although same-sex interactions involving genital contact have been reported in hundreds of animal species, they are routinely manifested in only a few, including humans. Simon LeVay stated that "[a]lthough homosexual behavior is very common in the animal world, it seems to be very uncommon that individual animals have a long-lasting predisposition to engage in such behavior to the exclusion of heterosexual activities. Thus, a homosexual orientation, if one can speak of such thing in animals, seems to be a rarity." The motivations for and implications of these behaviors are lensed through anthropocentric thinking; Bagemihl notes that any hypothesis is "necessarily an account of human interpretations of these phenomena".

One species in which exclusive homosexual orientation occurs is the domesticated sheep (Ovis aries). "About 10% of rams (males), refuse to mate with ewes (females) but do readily mate with other rams."

In relation to humans

Applying the term homosexual to animals

The term homosexual was coined by the Hungarian writer and campaigner Karl Maria Kertbeny in 1868 to describe same-sex sexual attraction and sexual behavior in humans. Its use in animal studies has been controversial for two main reasons: animal sexuality and motivating factors have been and remain poorly understood, and the term has strong cultural implications in western society that are irrelevant for species other than humans. Thus homosexual behavior has been given a number of terms over the years. According to Bruce Bagemihl, when describing animals, the term homosexual is preferred over gay, lesbian, and other terms currently in use, as these are seen as even more bound to human homosexuality.

Bailey et al. says:

Homosexual: in animals, this has been used to refer to same-sex behavior that is not sexual in character (e.g. 'homosexual tandem running' in termites), same-sex courtship or copulatory behavior occurring over a short period of time (e.g. 'homosexual mounting' in cockroaches and rams) or long-term pair bonds between same-sex partners that might involve any combination of courting, copulating, parenting and affectional behaviors (e.g. 'homosexual pair bonds' in gulls). In humans, the term is used to describe individual sexual behaviors as well as long-term relationships, but in some usages connotes a gay or lesbian social identity. Scientific writing would benefit from reserving this anthropomorphic term for humans and not using it to describe behavior in other animals, because of its deeply rooted context in human society.

Animal preference and motivation is always inferred from behavior. In wild animals, researchers will as a rule not be able to map the entire life of an individual, and must infer from frequency of single observations of behavior. The correct usage of the term homosexual is that an animal exhibits homosexual behavior or even samee-sex sexual behavior; however, this article conforms to the usage by modern research, applying the term homosexuality to all sexual behavior (copulation, genital stimulation, mating games and sexual display behavior) between animals of the same sex. In most instances, it is presumed that the homosexual behavior is but part of the animal's overall sexual behavioral repertoire, making the animal "bisexual" rather than "homosexual" as the terms are commonly understood in humans.

Nature

The observation of homosexual behavior in animals can be seen as both an argument for and against the acceptance of homosexuality in humans, and has been used especially against the claim that it is a peccatum contra naturam ("sin against nature"). For instance, homosexuality in animals was cited by the American Psychological Association and other groups in their amici curiae brief to the United States Supreme Court in Lawrence v. Texas, which ultimately struck down the sodomy laws of 14 states.

Research

A majority of the research available concerning homosexual behavior in animals lacks specification between animals that exclusively exhibit same-sex tendencies and those that participate in heterosexual and homosexual mating activities interchangeably. This lack of distinction has led to differing opinions and conflicting interpretations of collected data amongst scientists and researchers. For instance, Bruce Bagemihl, author of the book Biological Exuberence: Animal Homosexuality and Natural Diversity, emphasizes that there are no anatomical or endocrinological differences between exclusively homosexual and exclusively heterosexual animal pairs. However, if the definition of "homosexual behavior" is made to include animals that participate in both same-sex and opposite-sex mating activities, hormonal differences have been documented among key sex hormones, such as testosterone and estradiol, when compared to those who participate solely in heterosexual mating.

Many of the animals used in laboratory-based studies of homosexuality do not appear to spontaneously exhibit these tendencies often in the wild. Such behavior is often elicited and exaggerated by the researcher during experimentation through the destruction of a portion of brain tissue, or by exposing the animal to high levels of steroid hormones prenatally. Information gathered from these studies is limited when applied to spontaneously occurring same-sex behavior in animals outside of the laboratory.

Homosexual behaviour in animals has been discussed since classical antiquity. The earliest written mention of animal homosexuality appears to date back to 2,300 years ago, when Aristotle (384–322 BC) described copulation between pigeons, partridges and quails of the same sex. The Hieroglyphics of Horapollo, written in the 4th century AD by the Egyptian writer Horapollo, mentions "hermaphroditism" in hyenas and homosexuality in partridges. The first review of animal homosexuality was written by the zoologist Ferdinand Karsch-Haack in 1900.

Academic research into the ubiquity of same-sex sexual behavior was not carried out on a large scale, possibly due to observer bias caused by social attitudes to same-sex sexual behavior, innocent confusion, lack of interest, distaste, scientists fearing loss of their grants or even from a fear of "being ridiculed by their colleagues". Georgetown University biologist Janet Mann states "Scientists who study the topic are often accused of trying to forward an agenda, and their work can come under greater scrutiny than that of their colleagues who study other topics." They also noted "Not every sexual act has a reproductive function ... that's true of humans and non-humans." Studies have demonstrated homosexual behavior in a number of species, but the true extent of homosexuality in animals is not known.

Two male giraffes in Kenya.

Some researchers believe this behavior to have its origin in male social organization and social dominance, similar to the dominance traits shown in prison sexuality. Others, particularly Bagemihl, Joan Roughgarden, Thierry Lodé and Paul Vasey suggest the social function of sex (both homosexual and heterosexual) is not necessarily connected to dominance, but serves to strengthen alliances and social ties within a flock. While reports on many such mating scenarios are still only anecdotal, a growing body of scientific work confirms that permanent homosexuality occurs not only in species with permanent pair bonds, but also in non-monogamous species like sheep. One report on sheep found that 8% of rams exhibited homosexual preferences—that is, even when given a choice, they chose male over female partners. In fact, apparent homosexual individuals are known from all of the traditional domestic species, from sheep, cattle and horses to cats, dogs and budgerigars.

Basis

Sexual behaviors often require a significant energy investment. When sexual behaviors produce offspring, there is an obvious benefit for the animal. However, the benefit from performing homosexual behaviors (which cannot result in the production of offspring) is less obvious, and some scientists have called it a "Darwinian paradox" because it is non-reproductive. A number of non-exclusive different explanations for the emergence of such traits have been put forward.

Physiological basis

A definite physiological explanation or reason for homosexual activity in animal species has not been agreed upon by researchers in the field. Numerous scholars are of the opinion that varying levels (either higher or lower) of the sex hormones in the animal, in addition to the size of the animal's gonads, play a direct role in the sexual behavior and preference exhibited by that animal. Others firmly argue no evidence to support these claims exists when comparing animals of a specific species exhibiting homosexual behavior exclusively and those that do not. Ultimately, empirical support from comprehensive endocrinological studies exist for both interpretations. Researchers found no evidence of differences in the measurements of the gonads, or the levels of the sex hormones of exclusively homosexual western gulls and ring-billed gulls.

Additional studies pertaining to hormone involvement in homosexual behavior indicate that when administering treatments of testosterone and estradiol to female heterosexual animals, the elevated hormone levels increase the likelihood of homosexual behavior. Additionally, boosting the levels of sex hormones during an animal's pregnancy appears to increase the likelihood of it birthing a homosexual offspring.

Genetic basis

Researchers found that disabling the fucose mutarotase (FucM) gene in laboratory mice – which influences the levels of estrogen to which the brain is exposed – caused the female mice to behave as if they were male as they grew up. "The mutant female mouse underwent a slightly altered developmental programme in the brain to resemble the male brain in terms of sexual preference" said professor Chankyu Park of the Korea Advanced Institute of Science and Technology in Daejon, South Korea, who led the research. His findings were published in the BMC Genetics journal on July 7, 2010. Another study found that by manipulating a gene in fruit flies (Drosophila), homosexual behavior appeared to have been induced. However, in addition to homosexual behavior, several abnormal behaviors were also exhibited apparently due to this mutation.

Neurobiological basis

In March 2011, research showed that serotonin is involved in the mechanism of sexual orientation of mice. A study conducted on fruit flies found that inhibiting the dopamine neurotransmitter inhibited lab-induced homosexual behavior.

Other hypotheses

One proposal for the adaptive function of homosexual behavior is the formation of alliances and mutual social benefit to the animals. Studies support this in specific species, such as black swans, where a quarter of mate pairs consist of two males, who mate with a female and chase her away once she lays the egg, then raise it themselves. These M-M pairs have great success in defending their territory and resources, and keep their young alive until fledgling 80% of the time, compared to 30% for M-F pairs.

Studies done on homosexual behavior in birds showed a negative correlation between relative parental investment and F-F homosexual behaviors, i.e. females that invested more time and care into their young relative to males had less homosexual encounters. Similarly, there was a negative correlation between relative parental investment and M-M homosexual behaviors. This meant that species exhibiting a high degree of polygamy (where females often are the exclusive caretakers of the young) F-F sexual behaviors were very rare, whereas in a socially monogamous species (in which a M-F pair works together to care for young) they were much more common. The trend was opposite for males, in polygamous species M-M sexual behaviors were quite common and in socially monogamous species they were rare. The study argues that release from parental care, a very energy intensive investment, allows the opportunities for homosexual behaviors to be exhibited, and higher parental care prevents homosexual behaviors from occurring because of the energy cost of the behaviors.

A 2019 paper hypothesized that when sex first began to evolve, there was no distinction between homosexuality and heterosexuality, and animals mated with other members of their species indiscriminately. This is a contrast to most perspectives, which try to find explanations for the evolution of homosexual behaviors and separate it completely from the evolution of heterosexual behaviors. The study states that it is unlikely that sexual behaviors evolved simultaneously to the evolution of traits necessary to recognize a compatible sexual mate, such as size, shape, odor, and color. As those secondary sex characteristics evolved, sexuality would have become more discriminatory, leading to less homosexuality, but homosexual behaviors would rarely have had enough cost to be selected against and removed entirely from a population. Additionally, the cost of homosexual behavior would be offset by the cost of mate recognition, which requires psychological adaptations, and excessive discrimination in mate choice can lead to missing out of mating opportunities. With indiscriminate mating, these factors are irrelevant. The paper notes that in some species, especially where survival is very difficult and each energy-related decision could mean the animal's death, homosexual behavior would be strongly selected against, leading strictly heterosexual species.

Some select species and groups

Birds

Black swans

Swans, Cygnus atratus

An estimated one-quarter of all black swan pairings are of males. They steal nests, or form temporary threesomes with females to obtain eggs, driving away the female after she lays the eggs. The males spent time in each other's society, guarded the common territory, performed greeting ceremonies before each other, and (in the reproductive period) pre-marital rituals, and if one of the birds tried to sit on the other, an intense fight began. More of their cygnets survive to adulthood than those of different-sex pairs, possibly due to their superior ability to defend large portions of land. The same reasoning has been applied to male flamingo pairs raising chicks.

Albatrosses

Female Laysan albatrosses, on the north-western tip of the island of Oahu, Hawaii, form pairs for co-growing offspring. On the observed island, the number of females considerably exceeds the number of males (59% N=102/172), so 31% of females, after mating with males, create partnerships for hatching and feeding chicks. Compared to male-female couples, female partnerships have a lower hatching rate (41% vs 87%) and lower overall reproductive success (31% vs. 67%).

Warming waters from climate change have led to increased foraging times and thus increased mortality among female black-browed albatrosses on the Antipodes Islands in New Zealand. The skewed gender imbalance has led to many male albatrosses forming homosexual relationships. Male-male pairs now comprise between 2 - 5% of the albatross population on the islands.

Blue ducks

In 2009, a UK-based captive breeding program for blue ducks (involving two males and one female) was derailed when the two males paired with each other instead of with the female that they were assigned to mate with.

Ibises

Research has shown that the environmental pollutant methylmercury can increase the prevalence of homosexual behavior in male American white ibis. The study involved exposing chicks in varying dosages to the chemical and measuring the degree of homosexual behavior in adulthood. The results discovered was that as the dosage was increased the likelihood of homosexual behavior also increased. The endocrine blocking feature of mercury has been suggested as a possible cause of sexual disruption in other bird species.

Mallards

Two male mallards, Anas platyrhynchos

Mallards form male-female pairs only until the female lays eggs, at which time the male leaves the female. Mallards have rates of male-male sexual activity that are unusually high for birds, in some cases, as high as 19% of all pairs in a population. Kees Moeliker of the Natural History Museum Rotterdam has observed one male mallard engage in homosexual necrophilia.

Penguins

Penguins have been observed to engage in homosexual behaviour since at least as early as 1911. George Murray Levick, who documented this behaviour in Adélie penguins at Cape Adare, described it as "depraved". The report was considered too shocking for public release at the time, and was suppressed. The only copies that were made available privately to researchers had the English text partly written in Greek letters, to prevent this knowledge becoming more widely known. The report was unearthed only a century later, and published in Polar Record in June 2012.

In early February 2004, The New York Times reported that Roy and Silo, a male pair of chinstrap penguins in the Central Park Zoo in New York City, had successfully hatched and fostered a female chick from a fertile egg they had been given to incubate. Other penguins in New York zoos have also been reported to have formed same-sex pairs.

In Odense Zoo in Denmark, a pair of male king penguins adopted an egg that had been abandoned by a female, proceeding to incubate it and raise the chick. Zoos in Japan and Germany have also documented homosexual male penguin couples. The couples have been shown to build nests together and use a stone as a substitute for an egg. Researchers at Rikkyo University in Tokyo found 20 homosexual pairs at 16 major aquariums and zoos in Japan.

The Bremerhaven Zoo in Germany attempted to encourage reproduction of endangered Humboldt penguins by importing females from Sweden and separating three male pairs, but this was unsuccessful. The zoo's director said that the relationships were "too strong" between the homosexual pairs. German gay groups protested at this attempt to break up the male-male pairs but the zoo's director was reported as saying "We don't know whether the three male pairs are really homosexual or whether they have just bonded because of a shortage of females ... nobody here wants to forcibly separate homosexual couples."

A pair of male Magellanic penguins who had shared a burrow for six years at the San Francisco Zoo and raised a surrogate chick, split when the male of a pair in the next burrow died and the female sought a new mate.

Buddy and Pedro, a pair of male African penguins, were separated by the Toronto Zoo to mate with female penguins. Buddy has since paired off with a female.

Suki and Chupchikoni are two female African penguins that pair bonded at the Ramat Gan Safari in Israel. Chupchikoni was assumed to be male until her blood was tested.

In 2014 Jumbs and Hurricane, two Humboldt penguins at Wingham Wildlife Park became the center of international media attention as two male penguins who had pair bonded a number of years earlier and then successfully hatched and reared an egg given to them as surrogate parents after the mother abandoned it halfway through incubation.

As of 2018, two female King penguins at Kelly Tarltons in Auckland, New Zealand, called Thelma and Louise (named after the 1991 film) have been in a relationship for eight years, when most of the other eligible penguins switch partners each mating season, regardless of their orientation. The two penguins were both taking care of an egg that Thelma hatched, but is unknown whether it was fertilized.

Vultures

In 1998, two male griffon vultures named Dashik and Yehuda, at the Jerusalem Biblical Zoo, engaged in "open and energetic sex" and built a nest. The keepers provided the couple with an artificial egg, which the two parents took turns incubating, and 45 days later, the zoo replaced the egg with a baby vulture. The two male vultures raised the chick together. A few years later, however, Yehuda became interested in a female vulture that was brought into the aviary. Dashik became depressed, and was eventually moved to the zoological research garden at Tel Aviv University where he too set up a nest with a female vulture.

Two male vultures at the Allwetter Zoo in Muenster built a nest together, although they were picked on and their nest materials were often stolen by other vultures. They were eventually separated to try to promote breeding by placing one of them with female vultures, despite the protests of German homosexual groups.

Pigeons

Both male and female pigeons sometimes exhibit homosexual behavior. In addition to sexual behavior, same-sex pigeon pairs will build nests, and hens will lay (infertile) eggs and attempt to incubate them.

Mammals

Amazon dolphins

The Amazon river dolphin or boto has been reported to form up in bands of 3–5 individuals engaging in sexual activity. The groups usually comprise young males and sometimes one or two females. Sex is often performed in non-reproductive ways, using snout, flippers and genital rubbing, without regard to gender. In captivity, they have been observed to sometimes perform homosexual and heterosexual penetration of the blowhole, a hole homologous with the nostril of other mammals, making this the only known example of nasal sex in the animal kingdom. The males will sometimes also perform sex with males from the tucuxi species, a type of small porpoise.

American bisons

The American bison is a bovine mammal which displays homosexual behavior.
 

Courtship, mounting, and full anal penetration between bulls has been noted to occur among American bison. The Mandan nation Okipa festival concludes with a ceremonial enactment of this behavior, to "ensure the return of the buffalo in the coming season". Also, mounting of one female by another (known as "bulling") is extremely common among cattle. The behaviour is hormone driven and synchronizes with the emergence of estrus (heat), particularly in the presence of a bull.

Bats

More than 20 species of bat have been documented to engage in homosexual behavior. Bat species that have been observed engaging in homosexual behavior in the wild include:

Bat species that have been observed engaging in homosexual behavior in captivity include the Comoro flying fox (Pteropus livingstonii), the Rodrigues flying fox (Pteropus rodricensis) and the common vampire bat (Desmodus rotundus).

Homosexual behavior in bats has been categorized into 6 groups: mutual homosexual grooming and licking, homosexual masturbation, homosexual play, homosexual mounting, coercive sex, and cross-species homosexual sex.

In the wild, the grey-headed flying fox (Pteropus poliocephalus) engages in allogrooming wherein one partner licks and gently bites the chest and wing membrane of the other partner. Both sexes display this form of mutual homosexual grooming and it is more common in males. Males often have erect penises while they are mutually grooming each other. Like opposite-sex grooming partners, same-sex grooming partners continuously utter a "pre-copulation call", which is described as a "pulsed grating call", while engaged in this activity.

In wild Bonin flying foxes (Pteropus pselaphon), males perform fellatio or 'male-male genital licking' on other males. Male–male genital licking events occur repeatedly several times in the same pair, and reciprocal genital licking also occurs. The male-male genital licking in these bats is considered a sexual behavior. Allogrooming in Bonin flying foxes has never been observed, hence the male-male genital licking in this species does not seem to be a byproduct of allogrooming, but rather a behavior of directly licking the male genital area, independent of allogrooming. In captivity, same-sex genital licking has been observed among males of the Comoro flying fox (Pteropus livingstonii) as well as among males of the common vampire bat (Desmodus rotundus).

In wild Indian flying foxes (Pteropus giganteus), males often mount one another, with erections and thrusting, while play-wrestling. Males of the long-fingered bat (Myotis capaccinii) have been observed in the same position of male-female mounting, with one gripping the back of the other's fur. A similar behavior was also observed in the common bent-wing bat (Miniopterus schreibersii).

In wild little brown bats (Myotis lucifugus), males often mount other males (and females) during late autumn and winter, when many of the mounted individuals are torpid. 35% of matings during this period are homosexual. These coercive copulations usually include ejaculation and the mounted bat often makes a typical copulation call consisting of a long squawk. Similarly, in hibernacula of the common noctule (Nyctalus noctula), active males were observed to wake up from lethargy on a warm day and engage in mating with lethargic males and (active or lethargic) females. The lethargic males, like females, called out loudly and presented their buccal glands with opened mouth during copulation.

Vesey-Fitzgerald (1949) observed homosexual behaviours in all 12 British bat species known at the time: "Homosexuality is common in the spring in all species, and, since the males are in full possession of their powers, I suspect throughout the summer...I have even seen homosexuality between Natterer's and Daubenton's bats (Myotis nattereri and M. daubentonii)."

Bottlenose dolphins

Dolphins of several species engage in homosexual acts, though it is best studied in the bottlenose dolphins. Sexual encounters between females take the shape of "beak-genital propulsion", where one female inserts her beak in the genital opening of the other while swimming gently forward. Between males, homosexual behaviour includes rubbing of genitals against each other, which sometimes leads to the males swimming belly to belly, inserting the penis in the other's genital slit and sometimes anus.

Janet Mann, Georgetown University professor of biology and psychology, argues that the strong personal behavior among male dolphin calves is about bond formation and benefits the species in an evolutionary context. She cites studies showing that these dolphins later in life as adults are in a sense bisexual, and the male bonds forged earlier in life work together for protection as well as locating females to reproduce with. Confrontations between flocks of bottlenose dolphins and the related species Atlantic spotted dolphin will sometimes lead to cross-species homosexual behaviour between the males rather than combat.

Elephants

African and Asian male elephants will engage in same-sex bonding and mounting. Such encounters are often associated with affectionate interactions, such as kissing, trunk intertwining, and placing trunks in each other's mouths. Male elephants, who often live apart from the general herd, often form "companionships", consisting of an older individual and one or sometimes two younger males with sexual behavior being an important part of the social dynamic. Unlike heterosexual relations, which are always of a fleeting nature, the relationships between males may last for years. The encounters are analogous to heterosexual bouts, one male often extending his trunk along the other's back and pushing forward with his tusks to signify his intention to mount. Same-sex relations are common and frequent in both sexes, with Asiatic elephants in captivity devoting roughly 45% of sexual encounters to same-sex activity.

Giraffes

Male giraffes have been observed to engage in remarkably high frequencies of homosexual behavior. After aggressive "necking", it is common for two male giraffes to caress and court each other, leading up to mounting and climax. Such interactions between males have been found to be more frequent than heterosexual coupling. In one study, up to 94% of observed mounting incidents took place between two males. The proportion of same sex activities varied between 30 and 75%, and at any given time one in twenty males were engaged in non-combative necking behavior with another male. Only 1% of same-sex mounting incidents occurred between females.

Marmots

Olympic marmot (top) and hoary marmot (bottom).

Homosexual behavior is quite common in wild marmots. In Olympic marmots (Marmota olympus) and hoary marmots (Marmota caligata), females often mount other females as well as engage in other affectionate and sexual behaviors with females of the same species. They display a high frequency of these behaviors especially when they are in heat. A homosexual encounter often begins with a greeting interaction in which one female nuzzles her nose on the other female's cheek or mouth, or both females touch noses or mouths. Additionally, a female may gently chew on the ear or neck of her partner, who responds by raising her tail. The first female may sniff the other's genital region or nuzzle that region with her mouth. She may then proceed to mount the other female, during which the mounting female gently grasps the mounted female's dorsal neck fur in her jaws while thrusting. The mounted female arches her back and holds her tail to one side to facilitate their sexual interaction.

Lions

Both male and female lions have been seen to interact homosexually. Male lions pair-bond for a number of days and initiate homosexual activity with affectionate nuzzling and caressing, leading to mounting and thrusting. About 8% of mountings have been observed to occur with other males. Pairings between females are held to be fairly common in captivity but have not been observed in the wild.

Polecats

European polecats (Mustela putorius) were found to engage homosexually with non-sibling animals. Exclusive homosexuality with mounting and anal penetration in this solitary species serves no apparent adaptive function.

Primates

Bonobos
Bonobo

Bonobos form a matriarchal society, unusual among apes. They are fully bisexual: both males and females engage in hetero- and homosexual behavior, being noted for female–female sex in particular, including between juveniles and adults. Roughly 60% of all bonobo sexual activity occurs between two or more females. While the homosexual bonding system in bonobos represents the highest frequency of homosexuality known in any primate species, homosexuality has been reported for all great apes, as well as a number of other primate species.

Dutch primatologist Frans de Waal, who extensively observed and filmed bonobos, believed that sexual activity is the bonobo's way of avoiding conflict. Anything that arouses the interest of more than one bonobo at a time, not just food, tends to result in sexual contact. If two bonobos approach a cardboard box thrown into their enclosure, they will briefly mount each other before playing with the box. Such situations lead to squabbles in most other species. But bonobos are quite tolerant, perhaps because they use sex to divert attention and to defuse tension.

Bonobo sex often occurs in aggressive contexts totally unrelated to food. A jealous male might chase another away from a female, after which the two males reunite and engage in scrotal rubbing. Or after a female hits a juvenile, the latter's mother may lunge at the aggressor, an action that is immediately followed by genital rubbing between the two adults.

Gorillas

Homosexual behavior among male gorillas has been studied. This behavior occurs more often in all-male bachelor packs in the wild and it is believed to play a role in social bonding. Homosexual behavior among female mountain gorillas has also been documented.

Japanese macaques

With the Japanese macaque, also known as the "snow monkey", same-sex relations are frequent, though rates vary between troops. Females will form "consortships" characterized by affectionate social and sexual activities. In some troops up to one quarter of the females form such bonds, which vary in duration from a few days to a few weeks. Often, strong and lasting friendships result from such pairings. Males also have same-sex relations, typically with multiple partners of the same age. Affectionate and playful activities are associated with such relations.

Orangutans

Homosexual behavior forms part of the natural repertoire of sexual or sociosexual behavior of orangutans. Male homosexual behavior occurs both in the wild and in captivity, and it occurs in both adolescent and mature individuals. Homosexual behavior in orangutans is not an artifact of captivity or contact with humans.

Monkeys

Among monkeys, Lionel Tiger and Robin Fox conducted a study on how Depo-Provera contraceptives lead to decreased male attraction to females.

Sheep

Ovis aries has attracted much attention due to the fact that around 8–10% of rams have an exclusive homosexual orientation. Such rams prefer to court and mount other rams only, even in the presence of estrous ewes. Moreover, around 18–22% of rams are bisexual.

Several observations indicate that male–male sexual preference in rams is sexually motivated. Rams routinely perform the same courtship behaviors (including foreleg kicks, nudges, vocalizations, anogenital sniffs and flehmen) prior to mounting other males as observed when other rams court and mount estrous females. Furthermore, pelvic thrusting and ejaculation often accompany same-sex mounts by rams.

A number of studies have reported differences in brain structure and function between male-oriented and female-oriented rams, suggesting that sexual partner preferences are neurologically hard-wired. A 2003 study by Dr. Charles E. Roselli et al. (Oregon Health and Science University), states that homosexuality in male sheep is associated with a region in the rams' brains which the authors call the "ovine Sexually Dimorphic Nucleus" (oSDN) which is half the size of the corresponding region in heterosexual male sheep. Scientists found that, "The oSDN in rams that preferred females was significantly larger and contained more neurons than in male-oriented rams and ewes. In addition, the oSDN of the female-oriented rams expressed higher levels of aromatase, a substance that converts testosterone to estradiol, a form of estrogen which is believed to facilitate typical male sexual behaviors. Aromatase expression was no different between male-oriented rams and ewes [...] The dense cluster of neurons that comprise the oSDN express cytochrome P450 aromatase. Aromatase mRNA levels in the oSDN were significantly greater in female-oriented rams than in ewes, whereas male-oriented rams exhibited intermediate levels of expression." These results suggest that "... naturally occurring variations in sexual partner preferences may be related to differences in brain anatomy and its capacity for estrogen synthesis." As noted before, given the potential unagressiveness of the male population in question, the differing aromatase levels may also have been evidence of aggression levels, not sexuality. It should also be noted that the results of this particular study have not been confirmed by other studies.

The Merck Manual of Veterinary Medicine appears to consider homosexuality among sheep as a routine occurrence and an issue to be dealt with as a problem of animal husbandry.

Studies have failed to identify any compelling social factors that can predict or explain the variations in sexual partner preferences of domestic rams. Homosexual orientation and same-sex mounting in rams is not related to dominance, social rank or competitive ability. Indeed, male-oriented rams are not more or less dominant than female-oriented rams. Homosexual orientation in rams is also not affected by rearing conditions, i.e., rearing males in all-male groups, rearing male and female lambs together, early exposure of adolescent males to females and early social experiences with females do not promote or prevent homosexual orientation in rams. Male-oriented partner preference also does not appear to be an artifact caused by captivity or human management of sheep.

Homosexual courtship and sexual activity routinely occur among rams of wild sheep species, such as bighorn sheep (Ovis canadensis), thinhorn sheep (Ovis dalli), mouflons and urials (Ovis orientalis). Usually a higher ranking older male courts a younger male using a sequence of stylized movements. To initiate homosexual courtship, a courting male approaches the other male with his head and neck lowered and extended far forward in what is called the 'low-stretch' posture. He may combine this with the 'twist,' in which the courting male sharply rotates his head and points his muzzle toward the other male, often while flicking his tongue and making grumbling sounds. The courting male also often performs a 'foreleg kick', in which he snaps his front leg up against the other male's belly or between his hind legs. He also occasionally sniffs and nuzzles the other male's genital area and may perform the flehmen response. Thinhorn rams additionally lick the penis of the male they are courting. In response, the male being courted may rub his cheeks and forehead on the courting male's face, nibble and lick him, rub his horns on the courting male's neck, chest, or shoulders, and develop an erection. Males of another wild sheep species, the Asiatic mouflons, perform similar courtship behaviors towards fellow males.

Sexual activity between wild males typically involves mounting and anal intercourse. In Thinhorn sheep, genital licking also occurs. During mounting, the larger male usually mounts the smaller male by rearing up on his hind legs and placing his front legs on his partner's flanks. The mounting male usually has an erect penis and accomplishes full anal penetration while performing pelvic thrusts that may lead to ejaculation. The mounted male arches his back to facilitate the copulation. Homosexual courtship and sexual activity can also take place in groups composed of three to ten wild rams clustered together in a circle. These non-aggressive groups are called 'huddles' and involve rams rubbing, licking, nuzzling, horning, and mounting each other. Female Mountain sheep also engage in occasional courtship activities with one another and in sexual activities such as licking each other's genitals and mounting.

Spotted hyenas

The spotted hyena is a moderately large, terrestrial carnivore native to Africa.

The family structure of the spotted hyena is matriarchal, and dominance relationships with strong sexual elements are routinely observed between related females. Due largely to the female spotted hyena's unique urogenital system, which looks more like a penis rather than a vagina, early naturalists thought hyenas were hermaphroditic males who commonly practiced homosexuality. Early writings such as Ovid's Metamorphoses and the Physiologus suggested that the hyena continually changed its sex and nature from male to female and back again. In Paedagogus, Clement of Alexandria noted that the hyena (along with the hare) was "quite obsessed with sexual intercourse". Many Europeans associated the hyena with sexual deformity, prostitution, deviant sexual behavior, and even witchcraft.

The reality behind the confusing reports is the sexually aggressive behavior between the females, including mounting between females. Research has shown that "in contrast to most other female mammals, female Crocuta are male-like in appearance, larger than males, and substantially more aggressive," and they have "been masculinized without being defeminized".

Study of this unique genitalia and aggressive behavior in the female hyena has led to the understanding that more aggressive females are better able to compete for resources, including food and mating partners. Research has shown that "elevated levels of testosterone in utero" contribute to extra aggressiveness; both males and females mount members of both the same and opposite sex,who in turn are possibly acting more submissive because of lower levels of testosterone in utero.

Reptiles

Lizards

Several species of whiptail lizard (especially in the genus Aspidoscelis) consist only of females that have the ability to reproduce through parthenogenesis. Females engage in sexual behavior to stimulate ovulation, with their behavior following their hormonal cycles; during low levels of estrogen, these (female) lizards engage in "masculine" sexual roles. Those animals with currently high estrogen levels assume "feminine" sexual roles. Some parthenogenetic lizards that perform the courtship ritual have greater fertility than those kept in isolation due to an increase in hormones triggered by the sexual behaviors. So, even though asexual whiptail lizards populations lack males, sexual stimuli still increase reproductive success. From an evolutionary standpoint, these females are passing their full genetic code to all of their offspring (rather than the 50% of genes that would be passed in sexual reproduction). Certain species of gecko also reproduce by parthenogenesis.

Some species of sexually reproducing geckos have also been found to display homosexual behavior, e.g. the day geckos Phelsuma laticauda and Phelsuma cepediana.

Tortoises

Jonathan, the world's oldest tortoise (an Aldabra giant tortoise), had been mating with another tortoise named Frederica since 1991. In 2017, it was discovered that Frederica was actually probably male all along, and was renamed Frederic.

Insects and arachnids

There is evidence of same-sex sexual behavior in at least 110 species of insects and arachnids. Scharf et al. says: "Males are more frequently involved in same-sex sexual (SSS) behavior in the laboratory than in the field, and isolation, high density, and exposure to female pheromones increase its prevalence. SSS behavior is often shorter than the equivalent heterosexual behavior. Most cases can be explained via mistaken identification by the active (courting/mounting) male. Passive males often resist courting/mating attempts".

Scharf et al. continues: "SSS behavior has been reported in most insect orders, and Bagemihl (1999) provides a list of ~100 species of insects demonstrating such behavior. Yet, this list lacks detailed descriptions, and a more comprehensive summary of its prevalence in invertebrates, as well as ethology, causes, implications, and evolution of this behavior, remains lacking".

Dragonflies

The head of darner dragonfly (Basiaeschna janata)

Male homosexuality has been inferred in several species of dragonflies (the order Odonata). The cloacal pinchers of male damselflies and dragonflies inflict characteristic head damage to females during sex. A survey of 11 species of damsel and dragonflies has revealed such mating damages in 20 to 80% of the males too, indicating a fairly high occurrence of sexual coupling between males.

Fruit flies

Male Drosophila melanogaster flies bearing two copies of a mutant allele in the fruitless gene court and attempt to mate exclusively with other males. The genetic basis of animal homosexuality has been studied in the fly D. melanogaster. Here, multiple genes have been identified that can cause homosexual courtship and mating. These genes are thought to control behavior through pheromones as well as altering the structure of the animal's brains. These studies have also investigated the influence of environment on the likelihood of flies displaying homosexual behavior.

Bed bugs

Male bed bugs (Cimex lectularius) are sexually attracted to any newly fed individual and this results in homosexual mounting. This occurs in heterosexual mounting by the traumatic insemination in which the male pierces the female abdomen with his needle-like penis. In homosexual mating this risks abdominal injuries as males lack the female counteradaptive spermalege structure. Males produce alarm pheromones to reduce such homosexual mating.

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...