From Wikipedia, the free encyclopedia
 
Myelin
Neuron.svg
Structure of simplified neuron in the PNS
 
Neuron with oligodendrocyte and myelin sheath.svg
Neuron with oligodendrocyte and myelin sheath in the CNS
Details
SystemNervous system
Identifiers
FMA62977

Myelin is a lipid-rich (fatty) substance that surrounds nerve cell axons (the nervous system's "wires") to insulate them and increase the rate at which electrical impulses (called action potentials) are passed along the axon. The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it. However, unlike the plastic covering on an electrical wire, myelin does not form a single long sheath over the entire length of the axon. Rather, each myelin sheath insulates the axon over a single long section and, in general, each axon comprises multiple long myelinated sections separated from each other by short myelin sheath-gaps called nodes of Ranvier.

Myelin is formed in the central nervous system (CNS; brain, spinal cord and optic nerve) by glial cells called oligodendrocytes and in the peripheral nervous system (PNS) by glial cells called Schwann cells. In the CNS, axons carry electrical signals from one nerve cell body to another. In the PNS, axons carry signals to muscles and glands or from sensory organs such as the skin. Each myelin sheath is formed by the concentric wrapping of an oligodendrocyte (CNS) or Schwann cell (PNS) process (a limb-like extension from the cell body) around the axon. Myelin reduces the capacitance of the axonal membrane. On a molecular level, in the internodes it increases the distance between extracellular and intracellular ions, reducing the accumulation of charges. The discontinuous structure of the myelin sheath results in saltatory conduction, whereby the action potential "jumps" from one node of Ranvier, over a long myelinated stretch of the axon called the internode, before "recharging" at the next node of Ranvier, and so on, until it reaches the axon terminal. Nodes of Ranvier are the short (c. 1 micron) unmyelinated regions of the axon between adjacent long (c. 0.2 mm – >1 mm) myelinated internodes. Once it reaches the axon terminal, this electrical signal provokes the release of a chemical message or neurotransmitter that binds to receptors on the adjacent post-synaptic cell (e.g., nerve cell in the CNS or muscle cell in the PNS) at specialised regions called synapses.

This "insulating" role for myelin is essential for normal motor function (i.e. movement such as walking), sensory function (e.g. hearing, seeing or feeling the sensation of pain) and cognition (e.g. acquiring and recalling knowledge), as demonstrated by the consequences of disorders that affect it, such as the genetically determined leukodystrophies; the acquired inflammatory demyelinating disorder, multiple sclerosis; and the inflammatory demyelinating peripheral neuropathies. Due to its high prevalence, multiple sclerosis, which specifically affects the central nervous system (brain, spinal cord and optic nerve), is the best known disorder of myelin.

Development