From Wikipedia, the free encyclopedia
Diffraction of a scalar wave passing through a 1-wavelength-wide slit
Diffraction of a scalar wave passing through a 4-wavelength-wide slit
General diffraction
Because
diffraction is the result of addition of all waves (of given
wavelength) along all unobstructed paths, the usual procedure is to
consider the contribution of an infinitesimally small neighborhood
around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).
Thus in order to determine the pattern produced by diffraction,
the phase and the amplitude of each of the wavelets is calculated. That
is, at each point in space we must determine the distance to each of the
simple sources on the incoming wavefront. If the distance to each of
the simple sources differs by an integer number of wavelengths, all the
wavelets will be in phase, resulting in constructive interference. If
the distance to each source is an integer plus one half of a wavelength,
there will be complete destructive interference. Usually, it is
sufficient to determine these minima and maxima to explain the observed
diffraction effects.
The simplest descriptions of diffraction are those in which the
situation can be reduced to a two-dimensional problem. For water waves,
this is already the case, as water waves propagate only on the surface
of the water. For light, we can often neglect one dimension if the
diffracting object extends in that direction over a distance far greater
than the wavelength. In the case of light shining through small
circular holes we will have to take into account the full
three-dimensional nature of the problem.
Several qualitative observations can be made of diffraction in general:
- The angular spacing of the features in the diffraction pattern
is inversely proportional to the dimensions of the object causing the
diffraction. In other words: the smaller the diffracting object, the
wider the resulting diffraction pattern, and vice versa. (More
precisely, this is true of the sines of the angles.)
- The diffraction angles are invariant under scaling; that is, they
depend only on the ratio of the wavelength to the size of the
diffracting object.
- When the diffracting object has a periodic structure, for example in
a diffraction grating, the features generally become sharper. The
fourth figure, for example, shows a comparison of a double-slit
pattern with a pattern formed by five slits, both sets of slits having
the same spacing between the center of one slit and the next.
Approximations
The
problem of calculating what a diffracted wave looks like, is the
problem of determining the phase of each of the simple sources on the
incoming wave front. It is mathematically easier to consider the case of
far-field or Fraunhofer diffraction,
where the point of observation is far from that of the diffracting
obstruction, and as a result, involves less complex mathematics than the
more general case of near-field or Fresnel diffraction. To make this statement more quantitative, consider a diffracting object at the origin that has a size .
For definiteness let us say we are diffracting light and we are
interested in what the intensity looks like on a screen a distance away from the object. At some point on the screen the path length to one side of the object is given by the Pythagorean theorem
If we now consider the situation where , the path length becomes
This is the Fresnel approximation. To further simplify things: If the diffracting object is much smaller than the distance
,
the last term will contribute much less than a wavelength to the path
length, and will then not change the phase appreciably. That is
. The result is the Fraunhofer approximation, which is only valid very far away from the object
Depending on the size of the diffraction object, the distance to the
object and the wavelength of the wave, the Fresnel approximation, the
Fraunhofer approximation or neither approximation may be valid. As the
distance between the measured point of diffraction and the obstruction
point increases, the diffraction patterns or results predicted converge
towards those of Fraunhofer diffraction, which is more often observed in
nature due to the extremely small wavelength of visible light.
Multiple narrow slits
A simple quantitative description
Diagram
of a two slit diffraction problem, showing the angle to the first
minimum, where a path length difference of a half wavelength causes
destructive interference.
Multiple-slit arrangements can be mathematically considered as
multiple simple wave sources, if the slits are narrow enough. For light,
a slit is an opening that is infinitely extended in one dimension, and
this has the effect of reducing a wave problem in 3D-space to a simpler
problem in 2D-space.
The simplest case is that of two narrow slits, spaced a distance
apart. To determine the maxima and minima in the amplitude we must
determine the path difference to the first slit and to the second one.
In the Fraunhofer approximation, with the observer far away from the
slits, the difference in path length to the two slits can be seen from
the image to be
Maxima in the intensity occur if this path length difference is an integer number of wavelengths.
where
- is an integer that labels the order of each maximum,
- is the wavelength,
- is the distance between the slits, and
- is the angle at which constructive interference occurs.
The corresponding minima are at path differences of an integer number plus one half of the wavelength:
For an array of slits, positions of the minima and maxima are not changed, the fringes visible on a screen however do become sharper, as can be seen in the image.
2-slit and 5-slit diffraction of red laser light
Mathematical description
To
calculate this intensity pattern, one needs to introduce some more
sophisticated methods. The mathematical representation of a radial wave
is given by
where
,
is the wavelength,
is frequency of the wave and
is the phase of the wave at the slits at time
t
= 0. The wave at a screen some distance away from the plane of the
slits is given by the sum of the waves emanating from each of the slits.
To make this problem a little easier, we introduce the complex wave
, the real part of which is equal to
The absolute value of this function gives the wave amplitude, and the
complex phase of the function corresponds to the phase of the wave.
is referred to as the complex amplitude.
With
slits, the total wave at point
on the screen is
Since we are for the moment only interested in the amplitude
and relative phase, we can ignore any overall phase factors that are not
dependent on or . We approximate . In the Fraunhofer limit we can neglect terms of order in the exponential, and any terms involving or in the denominator. The sum becomes
The sum has the form of a geometric sum and can be evaluated to give
The intensity is given by the absolute value of the complex amplitude squared
where
denotes the
complex conjugate of
.
Single slit
Numerical
approximation of diffraction pattern from a slit of width equal to
wavelength of an incident plane wave in 3D blue visualization
Numerical
approximation of diffraction pattern from a slit of width four
wavelengths with an incident plane wave. The main central beam, nulls,
and phase reversals are apparent.
Graph and image of single-slit diffraction
As an example, an exact equation can now be derived for the intensity
of the diffraction pattern as a function of angle in the case of
single-slit diffraction.
A mathematical representation of Huygens' principle can be used to start an equation.
Consider a monochromatic complex plane wave of wavelength λ incident on a slit of width a.
If the slit lies in the x′-y′ plane, with its center at the
origin, then it can be assumed that diffraction generates a complex wave
ψ, traveling radially in the r direction away from the slit, and this
is given by:
Let (x′, y′, 0) be a point inside the slit over which it is being integrated. If (x, 0, z) is the location at which the intensity of the diffraction pattern is being computed, the slit extends from to , and from to .
The distance r from the slot is:
Assuming Fraunhofer diffraction will result in the conclusion . In other words, the distance to the target is much larger than the diffraction width on the target.
By the binomial expansion rule, ignoring terms quadratic and higher, the quantity on the right can be estimated to be:
It can be seen that 1/r in front of the equation is
non-oscillatory, i.e. its contribution to the magnitude of the intensity
is small compared to our exponential factors. Therefore, we will lose
little accuracy by approximating it as 1/z.
To make things cleaner, a placeholder C is used to denote constants in the equation. It is important to keep in mind that C can contain imaginary numbers, thus the wave function will be complex. However, at the end, the ψ will be bracketed, which will eliminate any imaginary components.
Now, in Fraunhofer diffraction, is small, so (note that participates in this exponential and it is being integrated).
In contrast the term can be eliminated from the equation, since when bracketed it gives 1.
(For the same reason we have also eliminated the term )
Taking results in:
It can be noted through Euler's formula and its derivatives that and .
where the (unnormalized)
sinc function is defined by
.
Now, substituting in , the intensity (squared amplitude) of the diffracted waves at an angle θ is given by:
Multiple slits
Double-slit diffraction of red laser light
2-slit and 5-slit diffraction
Let us again start with the mathematical representation of Huygens' principle.
Consider slits in the prime plane of equal size and spacing spread along the axis. As above, the distance from slit 1 is:
To generalize this to slits, we make the observation that while and remain constant, shifts by
Thus
and the sum of all
contributions to the wave function is:
Again noting that is small, so , we have:
Now, we can use the following identity
Substituting into our equation, we find:
We now make our substitution as before and represent all non-oscillating constants by the variable as in the 1-slit diffraction and bracket the result. Remember that
This allows us to discard the tailing exponent and we have our answer:
General case for far field
In the far field, where r is essentially constant, then the equation:
is equivalent to doing a
Fourier transform on the gaps in the barrier.