Space exploration is the discovery and exploration of celestial structures in outer space by means of evolving and growing space technology. While the study of space is carried out mainly by astronomers with telescopes, the physical exploration of space is conducted both by unmanned robotic space probes and human spaceflight.
While the observation of objects in space, known as astronomy, predates reliable recorded history, it was the development of large and relatively efficient rockets
during the mid-twentieth century that allowed physical space
exploration to become a reality. Common rationales for exploring space
include advancing scientific research, national prestige, uniting
different nations, ensuring the future survival of humanity, and
developing military and strategic advantages against other countries.
Space exploration has often been used as a proxy competition for geopolitical rivalries such as the Cold War. The early era of space exploration was driven by a "Space Race" between the Soviet Union and the United States. The launch of the first human-made object to orbit Earth, the Soviet Union's Sputnik 1, on 4 October 1957, and the first Moon landing by the American Apollo 11
mission on 20 July 1969 are often taken as landmarks for this initial
period. The Soviet Space Program achieved many of the first milestones,
including the first living being in orbit in 1957, the first human spaceflight (Yuri Gagarin aboard Vostok 1) in 1961, the first spacewalk (by Aleksei Leonov) on 18 March 1965, the first automatic landing on another celestial body in 1966, and the launch of the first space station (Salyut 1) in 1971.
After the first 20 years of exploration, focus shifted from one-off flights to renewable hardware, such as the Space Shuttle program, and from competition to cooperation as with the International Space Station (ISS).
With the substantial completion of the ISS following STS-133 in March 2011, plans for space exploration by the U.S. remain in flux. Constellation, a Bush Administration program for a return to the Moon by 2020 was judged inadequately funded and unrealistic by an expert review panel reporting in 2009.
The Obama Administration proposed a revision of Constellation in 2010 to
focus on the development of the capability for crewed missions beyond low Earth orbit (LEO), envisioning extending the operation of the ISS beyond 2020, transferring the development of launch vehicles for human crews from NASA to the private sector, and developing technology to enable missions to beyond LEO, such as Earth–Moon L1, the Moon, Earth–Sun L2, near-Earth asteroids, and Phobos or Mars orbit.
In the 2000s, the People's Republic of China initiated a successful manned spaceflight program, while the European Union, Japan, and India
have also planned future crewed space missions. China, Russia, Japan,
and India have advocated crewed missions to the Moon during the 21st
century, while the European Union has advocated manned missions to both the Moon and Mars during the 20th and 21st century.
From the 1990s onwards, private interests began promoting space tourism and then public space exploration of the Moon (see Google Lunar X Prize).
History of exploration in the 20th century
The highest known projectiles prior to the rockets of the 1940s were the shells of the Paris Gun, a type of German long-range siege gun, which reached at least 40 kilometers altitude during World War One. Steps towards putting a human-made object into space were taken by German scientists during World War II while testing the V-2 rocket, which became the first human-made object in space on 3 October 1942 with the launching of the A-4. After the war, the U.S. used German scientists
and their captured rockets in programs for both military and civilian
research. The first scientific exploration from space was the cosmic
radiation experiment launched by the U.S. on a V-2 rocket on 10 May
1946. The first images of Earth taken from space followed the same year while the first animal experiment
saw fruit flies lifted into space in 1947, both also on modified V-2s
launched by Americans. Starting in 1947, the Soviets, also with the help
of German teams, launched sub-orbital V-2 rockets and their own
variant, the R-1, including radiation and animal experiments on some flights. These suborbital experiments only allowed a very short time in space which limited their usefulness.
First orbital flights
The first successful orbital launch was of the Soviet uncrewed Sputnik 1
("Satellite 1") mission on 4 October 1957. The satellite weighed about
83 kg (183 lb), and is believed to have orbited Earth at a height of
about 250 km (160 mi). It had two radio transmitters (20 and 40 MHz),
which emitted "beeps" that could be heard by radios around the globe.
Analysis of the radio signals was used to gather information about the
electron density of the ionosphere, while temperature and pressure data
was encoded in the duration of radio beeps. The results indicated that
the satellite was not punctured by a meteoroid. Sputnik 1 was launched by an R-7 rocket. It burned up upon re-entry on 3 January 1958.
The second one was Sputnik 2. Launched by the USSR on November 3, 1957, it carried the dog Laika, who became the first animal in orbit.
This success led to an escalation of the American space program, which unsuccessfully attempted to launch a Vanguard satellite into orbit two months later. On 31 January 1958, the U.S. successfully orbited Explorer 1 on a Juno rocket.
First human flights
The first successful human spaceflight was Vostok 1 ("East 1"), carrying 27-year-old Russian cosmonaut Yuri Gagarin
on 12 April 1961. The spacecraft completed one orbit around the globe,
lasting about 1 hour and 48 minutes. Gagarin's flight resonated around
the world; it was a demonstration of the advanced Soviet space program and it opened an entirely new era in space exploration: human spaceflight.
The U.S. first launched a person into space within a month of Vostok 1 with Alan Shepard's suborbital flight on Freedom 7. Orbital flight was achieved by the United States when John Glenn's Friendship 7 orbited Earth on 20 February 1962.
Valentina Tereshkova, the first woman in space, orbited Earth 48 times aboard Vostok 6 on 16 June 1963.
China first launched a person into space 42 years after the launch of Vostok 1, on 15 October 2003, with the flight of Yang Liwei aboard the Shenzhou 5 (Divine Vessel 5) spacecraft.
First planetary explorations
The first artificial object to reach another celestial body was Luna 2 in 1959. The first automatic landing on another celestial body was performed by Luna 9 in 1966. Luna 10 became the first artificial satellite of the Moon.
The first crewed landing on another celestial body was performed by Apollo 11 on 20 July 1969.
The first successful interplanetary flyby was the 1962 Mariner 2 flyby of Venus (closest approach 34,773 kilometers). The other planets were first flown by in 1965 for Mars by Mariner 4, 1973 for Jupiter by Pioneer 10, 1974 for Mercury by Mariner 10, 1979 for Saturn by Pioneer 11, 1986 for Uranus by Voyager 2, 1989 for Neptune by Voyager 2. In 2015, the dwarf planets Ceres and Pluto were orbited by Dawn and passed by New Horizons, respectively.
The first interplanetary surface mission to return at least limited surface data from another planet was the 1970 landing of Venera 7 on Venus which returned data to Earth for 23 minutes. In 1975 the Venera 9 was the first to return images from the surface of another planet. In 1971 the Mars 3
mission achieved the first soft landing on Mars returning data for
almost 20 seconds. Later much longer duration surface missions were
achieved, including over six years of Mars surface operation by Viking 1 from 1975 to 1982 and over two hours of transmission from the surface of Venus by Venera 13 in 1982, the longest ever Soviet planetary surface mission.
Key people in early space exploration
The dream of stepping into the outer reaches of Earth's atmosphere was driven by the fiction of Peter Francis Geraci and H. G. Wells, and rocket technology was developed to try to realize this vision. The German V-2
was the first rocket to travel into space, overcoming the problems of
thrust and material failure. During the final days of World War II this
technology was obtained by both the Americans and Soviets as were its
designers. The initial driving force for further development of the
technology was a weapons race for intercontinental ballistic missiles (ICBMs) to be used as long-range carriers for fast nuclear weapon delivery, but in 1961 when the Soviet Union launched the first man into space, the United States declared itself to be in a "Space Race" with the Soviets.
Konstantin Tsiolkovsky, Robert Goddard, Hermann Oberth, and Reinhold Tiling laid the groundwork of rocketry in the early years of the 20th century.
Wernher von Braun was the lead rocket engineer for Nazi Germany's World War II V-2
rocket project. In the last days of the war he led a caravan of workers
in the German rocket program to the American lines, where they
surrendered and were brought to the United States to work on their
rocket development ("Operation Paperclip"). He acquired American citizenship and led the team that developed and launched Explorer 1, the first American satellite. Von Braun later led the team at NASA's Marshall Space Flight Center which developed the Saturn V moon rocket.
Initially the race for space was often led by Sergei Korolev, whose legacy includes both the R7 and Soyuz—which
remain in service to this day. Korolev was the mastermind behind the
first satellite, first man (and first woman) in orbit and first
spacewalk. Until his death his identity was a closely guarded state
secret; not even his mother knew that he was responsible for creating
the Soviet space program.
Kerim Kerimov was one of the founders of the Soviet space program and was one of the lead architects behind the first human spaceflight (Vostok 1)
alongside Sergey Korolyov. After Korolyov's death in 1966, Kerimov
became the lead scientist of the Soviet space program and was
responsible for the launch of the first space stations from 1971 to 1991, including the Salyut and Mir series, and their precursors in 1967, the Cosmos 186 and Cosmos 188.
Other key people
- Valentin Glushko was Chief Engine Designer for the Soviet Union. Glushko designed many of the engines used on the early Soviet rockets, but was constantly at odds with Korolyov.
- Vasily Mishin was Chief Designer working under Sergey Korolyov and one of the first Soviets to inspect the captured German V-2 design. Following the death of Sergei Korolev, Mishin was held responsible for the Soviet failure to be first country to place a man on the Moon.
- Robert Gilruth was the NASA head of the Space Task Force and director of 25 crewed space flights. Gilruth was the person who suggested to John F. Kennedy that the Americans take the bold step of reaching the Moon in an attempt to reclaim space superiority from the Soviets.
- Christopher C. Kraft, Jr. was NASA's first flight director, who oversaw development of Mission Control and associated technologies and procedures.
- Maxime Faget was the designer of the Mercury capsule; he played a key role in designing the Gemini and Apollo spacecraft, and contributed to the design of the Space Shuttle.
Targets of exploration
The Sun
Although the Sun
will probably not be physically explored at all, the study of the Sun
has nevertheless been a major focus of space exploration. Being above
the atmosphere in particular and Earth's magnetic field gives access to
the solar wind and infrared and ultraviolet radiations that cannot reach
Earth's surface. The Sun generates most space weather,
which can affect power generation and transmission systems on Earth and
interfere with, and even damage, satellites and space probes. Numerous
spacecraft dedicated to observing the Sun, beginning with the Apollo Telescope Mount, have been launched and still others have had solar observation as a secondary objective. Parker Solar Probe, launched in 2018, will approach the Sun to within 1/8th the orbit of Mercury.
Mercury
Mercury remains the least explored of the Terrestrial planets. As of May 2013, the Mariner 10 and MESSENGER missions have been the only missions that have made close observations of Mercury. MESSENGER
entered orbit around Mercury in March 2011, to further investigate the
observations made by Mariner 10 in 1975 (Munsell, 2006b).
A third mission to Mercury, scheduled to arrive in 2025, BepiColombo is to include two probes. BepiColombo is a joint mission between Japan and the European Space Agency. MESSENGER
and BepiColombo are intended to gather complementary data to help
scientists understand many of the mysteries discovered by Mariner 10's flybys.
Flights to other planets within the Solar System are accomplished
at a cost in energy, which is described by the net change in velocity
of the spacecraft, or delta-v.
Due to the relatively high delta-v to reach Mercury and its proximity
to the Sun, it is difficult to explore and orbits around it are rather
unstable.
Venus
Venus
was the first target of interplanetary flyby and lander missions and,
despite one of the most hostile surface environments in the Solar
System, has had more landers sent to it (nearly all from the Soviet
Union) than any other planet in the Solar System. The first successful
Venus flyby was the American Mariner 2
spacecraft, which flew past Venus in 1962. Mariner 2 has been followed
by several other flybys by multiple space agencies often as part of
missions using a Venus flyby to provide a gravitational assist en route to other celestial bodies. In 1967 Venera 4 became the first probe to enter and directly examine the atmosphere of Venus. In 1970, Venera 7
became the first successful lander to reach the surface of Venus and by
1985 it had been followed by eight additional successful Soviet Venus
landers which provided images and other direct surface data. Starting in
1975 with the Soviet orbiter Venera 9
some ten successful orbiter missions have been sent to Venus, including
later missions which were able to map the surface of Venus using radar to pierce the obscuring atmosphere.
Earth
Space exploration has been used as a tool to understand Earth as a
celestial object in its own right. Orbital missions can provide data for
Earth that can be difficult or impossible to obtain from a purely
ground-based point of reference.
For example, the existence of the Van Allen radiation belts was unknown until their discovery by the United States' first artificial satellite, Explorer 1.
These belts contain radiation trapped by Earth's magnetic fields, which
currently renders construction of habitable space stations above
1000 km impractical.
Following this early unexpected discovery, a large number of Earth
observation satellites have been deployed specifically to explore Earth
from a space based perspective. These satellites have significantly
contributed to the understanding of a variety of Earth-based phenomena.
For instance, the hole in the ozone layer
was found by an artificial satellite that was exploring Earth's
atmosphere, and satellites have allowed for the discovery of
archeological sites or geological formations that were difficult or
impossible to otherwise identify.
The Moon
The Moon
was the first celestial body to be the object of space exploration. It
holds the distinctions of being the first remote celestial object to be
flown by, orbited, and landed upon by spacecraft, and the only remote
celestial object ever to be visited by humans.
In 1959 the Soviets obtained the first images of the far side of the Moon, never previously visible to humans. The U.S. exploration of the Moon began with the Ranger 4 impactor in 1962. Starting in 1966 the Soviets successfully deployed a number of landers to the Moon which were able to obtain data directly from the Moon's surface; just four months later, Surveyor 1 marked the debut of a successful series of U.S. landers. The Soviet uncrewed missions culminated in the Lunokhod program in the early 1970s, which included the first uncrewed rovers and also successfully brought lunar soil samples to Earth
for study. This marked the first (and to date the only) automated
return of extraterrestrial soil samples to Earth. Uncrewed exploration
of the Moon continues with various nations periodically deploying lunar
orbiters, and in 2008 the Indian Moon Impact Probe.
Crewed exploration of the Moon began in 1968 with the Apollo 8 mission that successfully orbited the Moon, the first time any extraterrestrial object was orbited by humans. In 1969, the Apollo 11
mission marked the first time humans set foot upon another world.
Crewed exploration of the Moon did not continue for long, however. The Apollo 17 mission in 1972 marked the sixth landing and the most recent human visit there, and the next, Exploration Mission 2, is due to orbit the Moon in 2023. Robotic missions are still pursued vigorously.
Mars
The exploration of Mars
has been an important part of the space exploration programs of the
Soviet Union (later Russia), the United States, Europe, Japan and India.
Dozens of robotic spacecraft, including orbiters, landers, and rovers,
have been launched toward Mars since the 1960s. These missions were
aimed at gathering data about current conditions and answering questions
about the history of Mars. The questions raised by the scientific
community are expected to not only give a better appreciation of the red
planet but also yield further insight into the past, and possible
future, of Earth.
The exploration of Mars has come at a considerable financial cost
with roughly two-thirds of all spacecraft destined for Mars failing
before completing their missions, with some failing before they even
began. Such a high failure rate can be attributed to the complexity and
large number of variables involved in an interplanetary journey, and has
led researchers to jokingly speak of The Great Galactic Ghoul which subsists on a diet of Mars probes. This phenomenon is also informally known as the "Mars Curse".
In contrast to overall high failure rates in the exploration of Mars, India has become the first country to achieve success of its maiden attempt. India's Mars Orbiter Mission (MOM) is one of the least expensive interplanetary missions ever undertaken with an approximate total cost of ₹450 Crore (US$73 million). The first mission to Mars by any Arab country has been taken up by the United Arab Emirates. Called the Emirates Mars Mission,
it is scheduled for launch in 2020. The uncrewed exploratory probe has
been named "Hope Probe" and will be sent to Mars to study its atmosphere
in detail.
Phobos
The Russian space mission Fobos-Grunt, which launched on 9 November 2011 experienced a failure leaving it stranded in low Earth orbit. It was to begin exploration of the Phobos
and Martian circumterrestrial orbit, and study whether the moons of
Mars, or at least Phobos, could be a "trans-shipment point" for
spaceships traveling to Mars.
Jupiter
The exploration of Jupiter
has consisted solely of a number of automated NASA spacecraft visiting
the planet since 1973. A large majority of the missions have been
"flybys", in which detailed observations are taken without the probe
landing or entering orbit; such as in Pioneer and Voyager programs. The Galileo and Juno
spacecraft are the only spacecraft to have entered the planet's orbit.
As Jupiter is believed to have only a relatively small rocky core and no
real solid surface, a landing mission is precluded.
Reaching Jupiter from Earth requires a delta-v of 9.2 km/s, which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit. Fortunately, gravity assists through planetary flybys
can be used to reduce the energy required at launch to reach Jupiter,
albeit at the cost of a significantly longer flight duration.
Jupiter has 79 known moons, many of which have relatively little known information about them.
Saturn
Saturn has been explored only through uncrewed spacecraft launched by NASA, including one mission (Cassini–Huygens) planned and executed in cooperation with other space agencies. These missions consist of flybys in 1979 by Pioneer 11, in 1980 by Voyager 1, in 1982 by Voyager 2 and an orbital mission by the Cassini spacecraft, which lasted from 2004 until 2017.
Saturn has at least 62 known moons,
although the exact number is debatable since Saturn's rings are made up
of vast numbers of independently orbiting objects of varying sizes. The
largest of the moons is Titan,
which holds the distinction of being the only moon in the Solar System
with an atmosphere denser and thicker than that of Earth. Titan holds
the distinction of being the only object in the Outer Solar System that
has been explored with a lander, the Huygens probe deployed by the Cassini spacecraft.
Uranus
The exploration of Uranus has been entirely through the Voyager 2 spacecraft, with no other visits currently planned. Given its axial tilt
of 97.77°, with its polar regions exposed to sunlight or darkness for
long periods, scientists were not sure what to expect at Uranus. The
closest approach to Uranus occurred on 24 January 1986. Voyager 2 studied the planet's unique atmosphere and magnetosphere. Voyager 2 also examined its ring system and the moons of Uranus including all five of the previously known moons, while discovering an additional ten previously unknown moons.
Images of Uranus proved to have a very uniform appearance, with
no evidence of the dramatic storms or atmospheric banding evident on
Jupiter and Saturn. Great effort was required to even identify a few
clouds in the images of the planet. The magnetosphere of Uranus,
however, proved to be unique, being profoundly affected by the planet's
unusual axial tilt. In contrast to the bland appearance of Uranus
itself, striking images were obtained of the Moons of Uranus, including
evidence that Miranda had been unusually geologically active.
Neptune
The exploration of Neptune began with the 25 August 1989 Voyager 2 flyby, the sole visit to the system as of 2014. The possibility of a Neptune Orbiter has been discussed, but no other missions have been given serious thought.
Although the extremely uniform appearance of Uranus during Voyager 2's
visit in 1986 had led to expectations that Neptune would also have few
visible atmospheric phenomena, the spacecraft found that Neptune had
obvious banding, visible clouds, auroras, and even a conspicuous anticyclone storm system
rivaled in size only by Jupiter's small Spot. Neptune also proved to
have the fastest winds of any planet in the Solar System, measured as
high as 2,100 km/h. Voyager 2
also examined Neptune's ring and moon system. It discovered 900
complete rings and additional partial ring "arcs" around Neptune. In
addition to examining Neptune's three previously known moons, Voyager 2 also discovered five previously unknown moons, one of which, Proteus, proved to be the last largest moon in the system. Data from Voyager 2 supported the view that Neptune's largest moon, Triton, is a captured Kuiper belt object.
Other objects in the Solar System
The dwarf planet
Pluto presents significant challenges for spacecraft because of its
great distance from Earth (requiring high velocity for reasonable trip
times) and small mass (making capture into orbit very difficult at
present). Voyager 1
could have visited Pluto, but controllers opted instead for a close
flyby of Saturn's moon Titan, resulting in a trajectory incompatible
with a Pluto flyby. Voyager 2 never had a plausible trajectory for reaching Pluto.
Pluto continues to be of great interest, despite its
reclassification as the lead and nearest member of a new and growing
class of distant icy bodies of intermediate size (and also the first
member of the important subclass, defined by orbit and known as "plutinos"). After an intense political battle, a mission to Pluto dubbed New Horizons was granted funding from the United States government in 2003. New Horizons was launched successfully on 19 January 2006. In early 2007 the craft made use of a gravity assist from Jupiter.
Its closest approach to Pluto was on 14 July 2015; scientific
observations of Pluto began five months prior to closest approach and
continued for 16 days after the encounter.
Asteroids and comets
Until the advent of space travel, objects in the asteroid belt were merely pinpricks of light in even the largest telescopes, their shapes and terrain remaining a mystery.
Several asteroids have now been visited by probes, the first of which was Galileo, which flew past two: 951 Gaspra in 1991, followed by 243 Ida in 1993. Both of these lay near enough to Galileo's
planned trajectory to Jupiter that they could be visited at acceptable
cost. The first landing on an asteroid was performed by the NEAR Shoemaker probe in 2000, following an orbital survey of the object. The dwarf planet Ceres and the asteroid 4 Vesta, two of the three largest asteroids, were visited by NASA's Dawn spacecraft, launched in 2007.
Although many comets have been studied from Earth sometimes with
centuries-worth of observations, only a few comets have been closely
visited. In 1985, the International Cometary Explorer conducted the first comet fly-by (21P/Giacobini-Zinner) before joining the Halley Armada studying the famous comet. The Deep Impact probe smashed into 9P/Tempel to learn more about its structure and composition and the Stardust mission returned samples of another comet's tail. The Philae lander successfully landed on Comet Churyumov–Gerasimenko in 2014 as part of the broader Rosetta mission.
Hayabusa was an unmanned spacecraft developed by the Japan Aerospace Exploration Agency to return a sample of material from the small near-Earth asteroid 25143 Itokawa
to Earth for further analysis. Hayabusa was launched on 9 May 2003 and
rendezvoused with Itokawa in mid-September 2005. After arriving at
Itokawa, Hayabusa studied the asteroid's shape, spin, topography,
color, composition, density, and history. In November 2005, it landed
on the asteroid to collect samples. The spacecraft returned to Earth on
13 June 2010.
Deep space exploration
Deep space exploration is the branch of astronomy, astronautics and space technology that is involved with the exploration of distant regions of outer space. Physical exploration of space is conducted both by human spaceflights (deep-space astronautics) and by robotic spacecraft.
Some of the best candidates for future deep space engine technologies include anti-matter, nuclear power and beamed propulsion.
The latter, beamed propulsion, appears to be the best candidate for
deep space exploration presently available, since it uses known physics
and known technology that is being developed for other purposes.
Future of space exploration
In the 2000s, several plans for space exploration were announced;
both government entities and the private sector have space exploration
objectives. China has announced plans to have a 60-ton multi-module
space station in orbit by 2020.
The NASA Authorization Act of 2010
provided a re-prioritized list of objectives for the American space
program, as well as funding for the first priorities. NASA proposes to
move forward with the development of the Space Launch System (SLS), which will be designed to carry the Orion Multi-Purpose Crew Vehicle,
as well as important cargo, equipment, and science experiments to
Earth's orbit and destinations beyond. Additionally, the SLS will serve
as a back up for commercial and international partner transportation
services to the International Space Station. The SLS rocket will
incorporate technological investments from the Space Shuttle program and
the Constellation program in order to take advantage of proven hardware
and reduce development and operations costs. The first developmental
flight is targeted for the end of 2017.
High level automated systems
The
idea of using high level automated systems for space missions has
become a desirable goal to space agencies all around the world. Such
systems are believed to yield benefits such as lower cost, less human
oversight, and ability to explore deeper in space which is usually
restricted by long communications with human controllers.
Autonomous system
Autonomy is defined by three requirements:
- Being able to sense the world and their state, make decisions, and carry them out on their own
- Can interpret the given goal as a list of actions to take
- Fail flexibly
Benefits
Autonomous
technologies would be able to perform beyond predetermined actions.
They would analyze all possible states and events happening around them
and come up with a safe response. In addition, such technologies can
reduce launch cost and ground involvement. Performance would increase as
well. Autonomy would be able to quickly respond upon encountering an
unforeseen event, especially in deep space exploration where
communication back to Earth would take too long.
NASA's Autonomous Science Experiment
NASA
began its autonomous science experiment (ASE) on Earth Observing 1
(EO-1) which is NASA's first satellite in the new millennium program
Earth-observing series launched on 21 November 2000. The autonomy of ASE
is capable of on-board science analysis, replanning, robust execution,
and later the addition of model-based diagnostic. Images obtained by the
EO-1 are analyzed on-board and downlinked when a change or an
interesting event occur. The ASE software has successfully provided over
10,000 science images.
Asteroids in space exploration
An article in science magazine Nature suggested the use of asteroids as a gateway for space exploration, with the ultimate destination being Mars.
In order to make such an approach viable, three requirements need to be
fulfilled: first, "a thorough asteroid survey to find thousands of
nearby bodies suitable for astronauts to visit"; second, "extending
flight duration and distance capability to ever-increasing ranges out to
Mars"; and finally, "developing better robotic vehicles and tools to
enable astronauts to explore an asteroid regardless of its size, shape
or spin."
Furthermore, using asteroids would provide astronauts with protection
from galactic cosmic rays, with mission crews being able to land on them
in times of greater risk to radiation exposure.
Rationales
The research that is conducted by national space exploration agencies, such as NASA and Roscosmos,
is one of the reasons supporters cite to justify government expenses.
Economic analyses of the NASA programs often showed ongoing economic
benefits (such as NASA spin-offs), generating many times the revenue of the cost of the program.
It is also argued that space exploration would lead to the extraction
of resources on other planets and especially asteroids, which contain
billions of dollars worth of minerals and metals. Such expeditions could
generate a lot of revenue. As well, it has been argued that space exploration programs help inspire youth to study in science and engineering.
Another claim is that space exploration is a necessity to mankind and that staying on Earth will lead to extinction. Some of the reasons are lack of natural resources, comets, nuclear war, and worldwide epidemic. Stephen Hawking,
renowned British theoretical physicist, said that "I don't think the
human race will survive the next thousand years, unless we spread into
space. There are too many accidents that can befall life on a single
planet. But I'm an optimist. We will reach out to the stars."
NASA has produced a series of public service announcement videos supporting the concept of space exploration.
Overall, the public remains largely supportive of both crewed and uncrewed space exploration. According to an Associated Press
Poll conducted in July 2003, 71% of U.S. citizens agreed with the
statement that the space program is "a good investment", compared to 21%
who did not.
Arthur C. Clarke (1950) presented a summary of motivations for the human exploration of space in his non-fiction semi-technical monograph Interplanetary Flight.
He argued that humanity's choice is essentially between expansion off
Earth into space, versus cultural (and eventually biological) stagnation
and death.
Topics
Spaceflight
Spaceflight is the use of space technology to achieve the flight of spacecraft into and through outer space.
Spaceflight is used in space exploration, and also in commercial activities like space tourism and satellite telecommunications. Additional non-commercial uses of spaceflight include space observatories, reconnaissance satellites and other Earth observation satellites.
A spaceflight typically begins with a rocket launch, which provides the initial thrust to overcome the force of gravity
and propels the spacecraft from the surface of Earth. Once in space,
the motion of a spacecraft—both when unpropelled and when under
propulsion—is covered by the area of study called astrodynamics. Some spacecraft remain in space indefinitely, some disintegrate during atmospheric reentry, and others reach a planetary or lunar surface for landing or impact.
Satellites
Satellites are used for a large number of purposes. Common types
include military (spy) and civilian Earth observation satellites,
communication satellites, navigation satellites, weather satellites, and
research satellites. Space stations and human spacecraft in orbit are also satellites.
Commercialization of space
Current examples of the commercial use of space include satellite navigation systems, satellite television and satellite radio. Space tourism is the recent phenomenon of space travel by individuals for the purpose of personal pleasure.
Private spaceflight companies such as SpaceX and Blue Origin, and commercial space stations such as the Axiom Space and the Bigelow Commercial Space Station have dramatically changed the landscape of space exploration, and will continue to do so in the near future.
Alien life
Astrobiology is the interdisciplinary study of life in the universe, combining aspects of astronomy, biology and geology. It is focused primarily on the study of the origin, distribution and evolution of life. It is also known as exobiology (from Greek: έξω, exo, "outside").
The term "Xenobiology" has been used as well, but this is technically
incorrect because its terminology means "biology of the foreigners". Astrobiologists must also consider the possibility of life that is chemically entirely distinct from any life found on Earth. In the Solar System some of the prime locations for current or past astrobiology are on Enceladus, Europa, Mars, and Titan.
Living in space
Space colonization, also called space settlement and space
humanization, would be the permanent autonomous (self-sufficient) human habitation of locations outside Earth, especially of natural satellites or planets such as the Moon or Mars, using significant amounts of in-situ resource utilization.
To date, the longest human occupation of space is the International Space Station which has been in continuous use for 18 years, 40 days. Valeri Polyakov's record single spaceflight of almost 438 days aboard the Mir
space station has not been surpassed. Long-term stays in space reveal
issues with bone and muscle loss in low gravity, immune system
suppression, and radiation exposure.
Many past and current concepts for the continued exploration and
colonization of space focus on a return to the Moon as a "stepping
stone" to the other planets, especially Mars. At the end of 2006 NASA
announced they were planning to build a permanent Moon base with
continual presence by 2024.
Beyond the technical factors that could make living in space more widespread, it has been suggested that the lack of private property, the inability or difficulty in establishing property rights in space, has been an impediment to the development of space for human habitation. Since the advent of space technology
in the latter half of the twentieth century, the ownership of property
in space has been murky, with strong arguments both for and against. In
particular, the making of national territorial claims in outer space and on celestial bodies has been specifically proscribed by the Outer Space Treaty, which had been, as of 2012, ratified by all spacefaring nations.