From Wikipedia, the free encyclopedia

Acetylcholine
Acetylcholine.svg
Clinical data
Other namesACh
Physiological data
Source tissuesmotor neurons, parasympathetic nervous system, brain
Target tissuesskeletal muscles, brain, many other organs
Receptorsnicotinic, muscarinic
Agonistsnicotine, muscarine, cholinesterase inhibitors
Antagoniststubocurarine, atropine
Precursorcholine, acetyl-CoA
Biosynthesischoline acetyltransferase
Metabolismacetylcholinesterase
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
KEGG
E numberE1001(i) (additional chemicals) Edit this at Wikidata
CompTox Dashboard (EPA)
ECHA InfoCard100.000.118 Edit this at Wikidata
Chemical and physical data
FormulaC7H16NO2
Molar mass146.210 g·mol−1

Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (and humans) as a neurotransmitter—a chemical message released by nerve cells to send signals to other cells, such as neurons, muscle cells and gland cells. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic. Substances that interfere with acetylcholine activity are called anticholinergics.

Acetylcholine is the neurotransmitter used at the neuromuscular junction—in other words, it is the chemical that motor neurons of the nervous system release in order to activate muscles. This property means that drugs that affect cholinergic systems can have very dangerous effects ranging from paralysis to convulsions. Acetylcholine is also a neurotransmitter in the autonomic nervous system, both as an internal transmitter for the sympathetic nervous system and as the final product released by the parasympathetic nervous system. Acetylcholine is the primary neurotransmitter of the parasympathetic nervous systems.

In the brain, acetylcholine functions as a neurotransmitter and as a neuromodulator. The brain contains a number of cholinergic areas, each with distinct functions; such as playing an important role in arousal, attention, memory and motivation.

Acetylcholine (ACh), has also been traced in cells of non-neural origins and microbes. Recently, enzymes related to its synthesis, degradation and cellular uptake have been traced back to early origins of unicellular eukaryotes. The protist pathogen Acanthamoeba spp. has shown the presence of ACh, which provides growth and proliferative signals via a membrane located M1-muscarinic receptor homolog.

Partly because of its muscle-activating function, but also because of its functions in the autonomic nervous system and brain, many important drugs exert their effects by altering cholinergic transmission. Numerous venoms and toxins produced by plants, animals, and bacteria, as well as chemical nerve agents such as Sarin, cause harm by inactivating or hyperactivating muscles via their influences on the neuromuscular junction. Drugs that act on muscarinic acetylcholine receptors, such as atropine, can be poisonous in large quantities, but in smaller doses they are commonly used to treat certain heart conditions and eye problems. Scopolamine, which acts mainly on muscarinic receptors in the brain, can cause delirium and amnesia. The addictive qualities of nicotine are derived from its effects on nicotinic acetylcholine receptors in the brain.

Chemistry